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Abstract: Forging hammers are machines whose operation causes negative effects both at the place of their foundation (the soil  
settlement) and in their surroundings (e.g., vibrations propagating to the other devices, noise, etc.). Knowledge of the parameters charac-
terizing the time history of the force that arises as a result of impact of a ram on a shaped material is of fundamental importance for the 
correct analysis of both the structure of the hammer and its impact on the surroundings. In the paper, the effect of the shape and duration  
of a pulse load on the dynamic response of a hammer-foundation forging system was assessed. An analytical method of description of the 
forces that arise as a result of impact of the ram on the forged material, using different forms of pulses was presented. The forces defined 
in this way as loads in a mathematical model of three degrees of freedom forging system were used. The equations of motion derived  
from d'Alembert's principle were solved numerically in the Matlab program. The analyses for eight forms of the pulse loads with the same 
pulse sizes but different durations were performed. The results in the graphs were presented. It was found, among other things,  
that a greater impact on the maximum displacement, velocity and acceleration of each component of the hammer-foundation system  
as well as on the maximum forces transmitted to the soil has the duration of a pulse than its shape.  
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1. INTRODUCTION 

Forging hammers are impact action devices. They shape ma-
terials using the energy generated before the tool touches them. 

There are basically two types of forging hammers: gravity 
hammers and power hammers (Major, 1980). The first group 
includes drop hammers and single-acting steam hammers, where 
during the downstroke, the ram is accelerated by gravity and 
builds up the impact energy. The second group includes double-
acting hammers, where during the downstroke, in addition to 
gravity, the ram is accelerated by steam or compressed air. Of 
these types, the power hammers are most commonly used be-
cause they can easily produce high-energy impacts. 

The following basic elements can be distinguished in the gen-
eral diagram of a forging hammer with high-energy impact (Fig. 1): 
a ram consisting of a rod and a piston 1, an upper anvil 2 and, if 
necessary, an upper die 3 attached to it, a frame 4 with guides 5 
and the ram drive mechanism 6, an anvil block 7 with a lower anvil 
8 and, if applicable, a lower die 9 attached to it. 

Due to the impact nature of the action, high-energy impacts 
and the need to protect the environment against the negative 
effects of the forging hammers operation (the soil load, vibrations 
and noise), spring-damping elements and a foundation are placed 
under the anvil block. Depending on the type of foundation, the 
spring-damping elements placed under the anvil block may be 
pads made of oak beams or a hard felt, or these may be sets of 
viscous-spring vibro-isolators (Lipiński, 1985; Major, 1980). Now-
adays, foundations are most often made either as systems of 
reinforced concrete structures (Fig. 2a), sometimes replaced with 
steel supporting structures (Fig. 6a), connected by spring-

damping elements, or as reinforced concrete foundation troughs 
placed directly on the soil (Fig. 2b). 

 
Fig. 1. Structural diagram of a forging hammer with high-energy impact  
            (Majewski and Trąbka, 2006) 

The forging process starts with the initiation of the ram move-
ment. The ram hits the forged material at a certain velocity, caus-
ing it to deform. At the moment of the impact a part of the kinetic 
energy, which is accumulated in the ram, changes into the work of 
plastic deformation of the forged material, and the remaining 
unused part of the energy gives the ram a return velocity, and 
above all causes vibrations and elastic deformations of the anvil 
and foundation. Then the vibrations are transmitted through the 
foundation to the soil and surroundings. 
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The influence of the impact loads on the dynamics of forging 
devices, as well as the surroundings, for many years has been the 
subject of discussions, the results of which are presented at scien-
tific conferences, for example, ‘International Conference on Struc-
tures Under Shock and Impact’, are made available as books 
(Altan et al., 1969; Dresig and Holzweißig, 2010; Gryboś, 1969; 
Harris ed. and Piersol ed., 2002; Lipiński, 1985; Major, 1980), and 
above all, are published as articles in scientific journals. 

 
Fig. 2. Examples of foundations for forging hammers: a) a reinforced 

concrete foundation block 1 with a sub-anvil block pad 2 based  
on a spring-rubber isolation system 3 in a reinforced concrete 
foundation trough 4, b) a reinforced concrete foundation trough  
5 placed directly on the soil with a set of viscous-spring  
vibro-isolators 6 

Chehab and El Naggar (2003) assumed that the dynamical 
systems analysed by them set in motion the impact force with a 
rectangular pulse shape. Using the models with one and two 
degrees of freedom, they investigated the possibility of reducing 
the negative impact of the hammers on the surroundings. Leopa 
(2011) in turn, for a three-mass system, analysed the influence of 
the impact pulse duration of 0.1s, 0.03s and 0.007s, respectively, 
on the frequency representation of the considered load. He car-
ried out the analyses for pulse loads of the shapes: haversine and 
trapezoidal. The influence of the pulse shape generated during an 
impact on the dynamic response of the forging hammer founda-
tion was investigated in Prolović et al. (2004). The analyses were 
carried out for models with one and two degrees of freedom. The 
pulse loads with rectangular, trapezoidal, parabolic and semi-
sinusoidal shapes were considered. The same pulse duration was 
assumed (0.001s). The study of the dynamic response of a one-
mass model of a forging hammer both on changes in the shape of 
the pulse load (rectangular, semi-sinusoidal and symmetric trian-
gular), as well as changes in its duration are presented in Chehab 
and El Naggar (2004). The same kind of analysis, but used in the 
study of the dynamics of one and two-mass models of foundations 
for presses, was presented in Zheng et al. (2014). 

Based on the papers found, it can be seen that all processes 
that occur during forging depend strictly on the load transferred 
from the ram to the forged material. This load has the form of a 
pulse and is characterized by its size, shape and duration. The 
authors of individual papers conduct the dynamic analyses of 
forging processes either for the selected load durations, or one, or 
at most several forms of the time history of the forging force. 
Although in some papers, attempts of the more general analyses 
are undertaken (Chehab and El Naggar, 2004; Zheng et al., 
2014), in relation to the hammer-foundation forging systems, it is 
carried out using maximally simplified models with one degree of 
freedom (Chehab and El Naggar, 2004). 

Since among the found papers, there was no comprehensive 
study on the assessment of the effect of the duration and shape of 

the pulse on the quantities particularly important for assessing the 
impact of the forging hammer on the surroundings (the maximum 
displacements, velocities and accelerations of the foundation and 
the forces transmitted to the soil), in this paper, an analysis was 
carried out in the above-mentioned scope. The forging system 
with three degrees of freedom was assessed. The analyses for 
eight forms of the pulse loads with the same pulse sizes but dif-
ferent durations were performed. The pulse durations were 
changed from 0.001 s to 0.2 s every 0.001 s. The dynamic re-
sponses of the forging system for unfavourable forging conditions, 
that is, cold forging of steel at maximum velocity were determined. 

2. IMPACT LOADS 

The forces that arise during the blows of the ram of the forging 
hammer against the forged material are the reaction of the system 
absorbing the impact energy to the impact load (Gryboś, 1969). 
These forces reach very high values and their durations 𝜏 are very 
short. They are referred to as the so-called pulse loads, and their 

size 𝑆 (1) is determined as equal to the area under the curve 
representing the time history of the pulse load 𝑃(𝑡) (Fig. 3). 

𝑆 = ∫ 𝑃(𝑡)𝑑𝑡
𝜏

0
 (1) 

where: 𝑆 – the pulse size, 𝑃(𝑡) – the time history of the pulse, 𝜏 – 
the pulse duration. 

 
Fig. 3. Pulse load 

If the pulse durations 𝜏 are extremely short, that is, satisfy the 
condition 𝜏 <  0.1 ∙ 𝑇𝑚𝑖𝑛 (where: 𝑇𝑚𝑖𝑛  is the smallest period of 
natural vibration of the system), they are referred to as sudden 
pulses (Harris ed. and Piersol ed., 2002;  Lipiński, 1985). The 
sudden pulses are fully characterized only by their size 𝑆. In the 
description of this type of loads, the shapes of the force time 
histories are omitted. However, it is assumed that the forces act 
only at selected points in time (the loads are defined using the 
Dirac delta function). 

If the pulse durations 𝜏 satisfy the condition 0.1 ∙ 𝑇𝑚𝑖𝑛  ≤
 𝜏 ≤  𝑇𝑚𝑎𝑥  (where: 𝑇𝑚𝑎𝑥  is the largest period of natural vibration 
of the system), the pulses are called short-term (Lipiński, 1985). In 
this case, the response of the system is affected by the character-
istics of the pulse loads. The short-term pulses are characterized 

by their shape, defined as the time history of the pulse 𝑃(𝑡), size 

𝑆 or amplitude 𝑃𝑚, as well as duration 𝜏 (Harris ed. and Piersol 
ed., 2002;  Lipiński, 1985; Prolović et al., 2004). 

The pulse loads resulting from the blows can take different 
shapes (Fig. 4). The differences between them result, among 
others, from the size and shape of the forged material, its temper-
ature and mechanical properties, elastic properties of the materi-
als used to make elements of the forging system, the contact 
surface geometry and the impact energy (Gryboś, 1969). A large 
number of factors affecting the time histories of forging forces 
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makes their theoretical determination very difficult, therefore, they 
are determined experimentally (Bieliajew and Popow, 1967). 

For theoretical considerations, the real non-linear time histo-

ries of the pulses are approximated in various ways, including 
straight lines or trigonometric functions (Fig. 5). 

 

Fig. 4. Time histories of forging forces obtained experimentally by Bieliajew and Popow (1967): a), b) for steel, c), d) for duralumin 

 

Fig. 5. Shapes of pulse loads: a) rectangular (type A), b) triangular (type B), c) trapezoidal (type C), d) triangular-trapezoidal (type D), e) parabolic (type E), 
f) semi-sinusoidal (type F), g) versed sine-rectangular (type G), h) exponential-rectangular (type H) 

The approximate time histories 𝑃(𝑡) of the pulses can be presented in analytical notation as follows: 

 Rectangular pulse (Fig. 5a): 

 𝑃(𝑡) = {
𝑃𝑚 =

𝑆

𝜏
                                                                        for                                              0 ≤ 𝑡 ≤ 𝜏

0                                                                                   for                                                      𝑡 > 𝜏
 (2)          

 Triangular pulse (Fig. 5b): 

𝑃(𝑡) =

{
 

 𝑃𝑚 ∙
𝑡

𝜏1
=

2∙𝑆

𝜏1+𝜏2
∙
𝑡

𝜏1
                                                    for                                            0 ≤ 𝑡 ≤ 𝜏1

𝑃𝑚 ∙
𝜏1+𝜏2−𝑡

𝜏2
=

2∙𝑆

𝜏1+𝜏2
∙
𝜏1+𝜏2−𝑡

𝜏2
                                 for                                 𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2

0                                                                                   for                                           𝑡 > 𝜏1 + 𝜏2

           (3) 

 Trapezoidal pulse (Fig. 5c): 

 𝑃(𝑡) =

{
 
 

 
 𝑃𝑚 ∙

𝑡

𝜏1
=

2∙𝑆

𝜏1+2∙𝜏2+𝜏3
∙
𝑡

𝜏1
                                           for                                           0 ≤ 𝑡 ≤ 𝜏1

𝑃𝑚 =
2∙𝑆

𝜏1+2∙𝜏2+𝜏3
                                                        for                                𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2

𝑃𝑚 ∙
𝜏1+𝜏2+𝜏3−𝑡

𝜏3
=

2∙𝑆

𝜏1+2∙𝜏2+𝜏3
∙
𝜏1+𝜏2+𝜏3−𝑡

𝜏3
             for             𝜏1 + 𝜏2 < 𝑡 ≤ 𝜏1 + 𝜏2 + 𝜏3

0                                                                                  for                                 𝑡 > 𝜏1 + 𝜏2 + 𝜏3

 (4) 

 Triangular-trapezoidal pulse (Fig. 5d): 

 𝑃(𝑡) =

{
 
 

 
 𝑢𝑃𝑚 ∙ 𝑃𝑚 ∙

𝑡

𝜏1
                                                              for                                          0 ≤ 𝑡 ≤ 𝜏1

𝑢𝑃𝑚 ∙ 𝑃𝑚 + (𝑃𝑚 − 𝑢𝑃𝑚 ∙ 𝑃𝑚) ∙
𝑡−𝜏1

𝜏2
                       for                               𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2

𝑃𝑚 ∙
𝜏1+𝜏2+𝜏3−𝑡

𝜏3
                                                          for             𝜏1 + 𝜏2 < 𝑡 ≤ 𝜏1 + 𝜏2 + 𝜏3

0                                                                                   for                                 𝑡 > 𝜏1 + 𝜏2 + 𝜏3

 (5)          

where: 𝑃𝑚 =
2∙𝑆

𝑢𝑃𝑚 ∙(𝜏1+𝜏2)+𝜏2+𝜏3
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 Parabolic pulse (Fig. 5e): 

 𝑃(𝑡) = {
4 ∙ 𝑃𝑚 ∙

𝑡

𝜏
 ∙ (1 −

𝑡

𝜏
) = 4 ∙

3

2
∙
𝑆

𝜏
∙
𝑡

𝜏
 ∙ (1 −

𝑡

𝜏
)            for                                        0 ≤ 𝑡 ≤ 𝜏

0                                                                                    for                                                 𝑡 > 𝜏
 (6)          

 Semi-sinusoidal pulse (Fig. 5f): 

 𝑃(𝑡) = {
𝑃𝑚 ∙ sin (𝜋 ∙

𝑡

𝜏
) =

𝜋

2
∙
𝑆

𝜏
∙ sin (𝜋 ∙

𝑡

𝜏
)                          for                                       0 ≤ 𝑡 ≤ 𝜏

0                                                                                     for                                                𝑡 > 𝜏
 (7)          

 Versed sine-rectangular pulse (Fig. 5g): 

 𝑃(𝑡) =

{
 
 

 
 
𝑃𝑚

2
∙ (1 − cos (𝜋 ∙

𝑡

𝜏1
))                                              for                                      0 ≤ 𝑡 ≤ 𝜏1

𝑃𝑚                                                                                  for                           𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2
𝑃𝑚

2
∙ (1 + cos (𝜋 ∙

𝑡−𝜏1−𝜏2

𝜏3
))                                    for        𝜏1 + 𝜏2 < 𝑡 ≤ 𝜏1 + 𝜏2 + 𝜏3

0                                                                                    for                            𝑡 > 𝜏1 + 𝜏2 + 𝜏3

 (8)         

where: 𝑃𝑚 =
2∙𝑆

𝜏1+2∙𝜏2+𝜏3
 

 Exponential-rectangular pulse (Fig. 5h): 

 𝑃(𝑡) =

{
  
 

  
 𝑃𝑚 ∙

1−𝑒
−2∙𝜋∙

𝑡
𝜏1

1−𝑒−2∙𝜋
                                                             for                                       0 ≤ 𝑡 ≤ 𝜏1

𝑃𝑚                                                                                 for                            𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2

𝑃𝑚 ∙
1−𝑒

−2∙𝜋∙(1− 
𝑡−𝜏1−𝜏2

𝜏3
)

1−𝑒−2∙𝜋
                                             for         𝜏1 + 𝜏2 < 𝑡 ≤ 𝜏1 + 𝜏2 + 𝜏3

0                                                                                   for                             𝑡 > 𝜏1 + 𝜏2 + 𝜏3

 (9)          

where: 𝑃𝑚 =
𝑆

𝜏1∙(
1

1−𝑒−2∙𝜋
 − 

1

2∙𝜋
)+𝜏2+𝜏3∙(

1

1−𝑒−2∙𝜋
 − 

1

2∙𝜋
)
 

 
In equations (2÷9): 𝑃(𝑡) – the time history of the pulse, 𝑃𝑚 –

the pulse amplitude, 𝑢𝑃𝑚 – the scaling factor (can take values in 

the range 0÷1), 𝑆 – the pulse size, 𝜏, 𝜏1, 𝜏2 and 𝜏3 – the pulse 
durations (as indicated in Fig. 5). 

The pulse amplitudes 𝑃𝑚 can be determined based on the 
size of the pulses 𝑆 and transformed formulas (2÷9) for the areas 
of the figures representing the approximate time histories of the 
pulses. 

The pulse size 𝑆 for forging, in the absence of measurement 
data, according to the information contained in Lipiński (1985) can 
be estimated based on the empirical relationship (10). 

𝑆 = (1 + 𝑅) ∙ 𝑚𝐵 ∙ 𝑣𝐵 = (1 + 𝑅) ∙ 𝑚𝐵 ∙ √
2∙𝐸𝑝

𝑚𝐵
  (10) 

where: 𝑚𝐵 – the mass of the ram with the upper die block, 𝑣𝐵 – 

the velocity of the ram at the moment of impact, 𝐸𝑝 – the total 

energy of the impact of the hammer, 𝑅 – the coefficient 
of restitution (the coefficient of impact elasticity). The value of 𝑅 
varies between 0 and 1, depending upon whether the colliding 

bodies are of plastic character (𝑅 = 0), or the impact is completely 
elastic (𝑅 = 1) (Gryboś, 1969; Lipiński, 1985; Major, 1980). 

3. CONSIDERED FORGING SYSTEM 

The real forging system (Fig. 6a) containing a steam-air die 
forging hammer MPM 16000 B – type 1, and a foundation consist-
ing of a viscous-elastic pad 2, a steel frame 3, a viscous-spring 
isolation system 4 and a foundation trough 5, which rests on an 
elastic subsoil, was selected as the object of considerations. For 
the above structure, a physical model with three degrees of free-
dom was adopted (Fig. 6b). 

Replacing the real object with the physical model, it was as-
sumed, among other things, that the hammer, the steel frame and 
the foundation trough are coaxially located, non-deformable mate-
rial bodies with linear relative motion. The Kelvin-Voigt body, 
defined by a spring and a dashpot connected in parallel, fulfils the 
role of constraints between the material bodies. The masses of 
the material bodies are concentrated in material points, while the 
elastic and damping constraints are considered as weightless. 

 
Fig. 6. a) Structural diagram of a real forging system, b) Physical model   

of the forging system 

4. MATHEMATICAL MODEL AND ITS PARAMETERS 

The mathematical model of the forging system consisting 
of three mass elements (Fig. 6b) was written in the form of the 
motion equations (11), which were derived based on the d'Alem-
bert principle for the case of forced-damped vibrations. 
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𝑚1 ∙ �̈�1 + 𝑐1 ∙ (�̇�1 − �̇�2) + 𝑘1 ∙ (𝑦1 − 𝑦2) = 𝑃(𝑡)  

𝑚2 ∙ �̈�2 + 𝑐1 ∙ (�̇�2 − �̇�1) + 𝑘1 ∙ (𝑦2 − 𝑦1) +  

+ 𝑐2 ∙ (�̇�2 − �̇�3) + 𝑘2 ∙ (𝑦2 − 𝑦3) = 0 (11) 

𝑚3 ∙ �̈�3 + 𝑐2 ∙ (�̇�3 − �̇�2) + 𝑘2 ∙ (𝑦3 − 𝑦2) +  

+ 𝑐3 ∙ �̇�3 + 𝑘3 ∙ 𝑦3 = 0    

where: 𝑚1, 𝑚2, 𝑚3 – the masses of the hammer, steel frame and  

foundation trough, respectively, 𝑐1, 𝑐2, 𝑐3 – the damping con-
stants of the viscous-elastic pad, viscous-spring isolation system 

and soil, respectively, 𝑘1, 𝑘2, 𝑘3 – the stiffness of the viscous-
elastic pad, viscous-spring isolation system and soil, respectively, 
𝑃(𝑡) – the time history of the pulse, �̈�𝑖, �̇�𝑖 , 𝑦𝑖  – the acceleration, 
velocity and displacement of the i-th mass (i = 1, 2, 3), respective-
ly. 

The differential equations of motion (11) with initial conditions 
(12) were solved numerically in the Matlab program. 

𝑡 = 0;   𝑦1 = 𝑦2 = 𝑦3 = 0;   �̇�1 = �̇�2 = �̇�3 = 0    (12) 

The subsequent time histories of the pulses 𝑃(𝑡) described 
by equations (2÷9) as the load were assumed. The integration of 
the equations was performed using the fourth order Runge-Kutta 
technique and own calculation scripts. 

As the solution of the differential equations the time histories 
of the displacements, velocities and accelerations of individual 
elements of the forging system were obtained. 

The force transmitted to the soil can be evaluated from equa-
tion (13) (Chehab and El Naggar, 2003; Chehab and El Naggar, 
2004; Zheng et al., 2014).  

𝑃S = 𝑐3 ∙ �̇�3 + 𝑘3 ∙ 𝑦3 (13) 

where: 𝑃S – the force transmitted to the soil, 𝑐3 – the damping 

constant of the soil, 𝑘3 – the stiffness of the soil, �̇�3 – the velocity 
of the foundation trough, 𝑦3 – the displacement of the foundation 
trough. 

The parameters of the numerical model were adopted on the 
basis of the data characterizing the real foundation of the die 
forging hammer MPM 16000 B - type, as shown in Fig. 6a. The 
parameters of the model are summarized in Table 1. 

Tab. 1. Parameters of the computational model 

Parameter 
Value 
[kg] 

Parameter 
Value 
[N/m] 

Parameter 
Value 

[N·s/m] 

𝑚1 168000 𝑘1 950·106 𝑐1 1.84·106 

𝑚2 18500 𝑘2 183·106 𝑐2 3.6·106 

𝑚3 248200 𝑘3 8329·106 𝑐3 12.26·106 

5. ANALYSIS PARAMETERS, RESULTS AND DISCUSSION 

To investigate the effect of the shape and duration of the 
pulse load on the dynamic response of the hammer-foundation 
forging system and the forces transmitted to the surroundings, 
comprehensive analyses were performed. 

A single hit of the ram was analysed. The analyses involved 
eight forms of the pulse loads (Fig. 5) with the same pulse sizes 

𝑆 = 79793 N · s  but different durations. 

The pulse size was determined on the basis of equation (10) 
(Lipiński, 1985) assuming that the impact of the ram and the 

upper die block with the total mass 𝑚𝐵 = 8085 kg occurs with the 
maximum kinetic energy, which for the considered die hammer is 

𝐸𝑝 = 175000 J, and the coefficient of restitution R has the value, 

which according to Dresig and Holzweißig (2010), Lipiński (1985) 
and Major (1980), corresponds to performing heavy works on the 
die hammers, that is, cold forging of steel (R  = 0.5). 

The pulse durations 𝜏 were changed from 0.001 s to 0.2 s 
every 0.001 s. The lower limit value was adopted based on the 
literature data (Altan et al., 1969; Leopa, 2011), while the upper 
limit was calculated based on the condition of occurrence of the 
short-term pulses (see chapter 2). For the triangular pulse, it was 
adopted that 𝜏1 = 𝜏2, while for the pulses: trapezoidal, triangular-
trapezoidal, versed sine-rectangular as well as exponential-

rectangular, it was assumed that 𝜏1 = 𝜏3 = 0.2 ∙ 𝜏. For the 
triangular-trapezoidal pulse, it was assumed, furthermore, that 

𝑢𝑃𝑚 = 0.7. 

On the basis of the results, the pulse amplitudes, the maxi-
mum displacements, velocities and accelerations of the individual 
elements of the computational model as well as the maximum 
forces transmitted to the soil were determined.  

The pulse amplitudes are shown in Fig. 7 as a function of the 
shape and duration of the pulses. 

 
Fig. 7. The pulse amplitudes as function of shape and duration of pulses 

Fig. 7 shows that for the same pulse sizes, regardless of their 
duration, the force reaches the highest value for the triangular 
pulse, while the maximum forces corresponding to the remaining 
pulses are lower by 21% for the semi-sinusoidal pulse, by 26% for 
the triangular-trapezoidal and parabolic pulse, by 37% for the 
versed sine-rectangular and trapezoidal pulse, by 50% for rectan-
gular and exponential-rectangular pulse, respectively. 

The maximum displacements, velocities and accelerations of 
the hammer and foundation trough in dependence of the shape 
and duration of the pulses are shown in Figs. 8–10. 

The displacements, velocities and accelerations of the ham-
mer and foundation trough reach the highest values for pulses 
with the shortest duration (Figs. 8–10). When the duration of the 
pulses increases, these values decrease. At the same time, de-
pending on the pulse shape, the differences between the maxi-
mum displacements of the individual elements increase. 
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a) b) 

  
Fig. 8. Effect of shape and duration of pulses on the maximum displacement: a) of the hammer, b) of the foundation trough 

a) b) 

  
Fig. 9. Effect of shape and duration of pulses on the maximum velocity: a) of the hammer, b) of the foundation trough 

a) b) 

  
Fig. 10. Effect of shape and duration of pulses on the maximum acceleration: a) of the hammer, b) of the foundation trough 

 
Fig. 11. The maximum forces transmitted to the soil as a function  

  of shape and duration of pulses  

Similar observations can be made regarding the maximum 
forces transmitted to the soil from Fig. 11. 

6. SUMMARY AND CONCLUSIONS 

In the paper, the effect of the duration and shape of a pulse 
load on the dynamic response of a hammer-foundation forging 
system was assessed. The forging system with three degrees of 
freedom was analysed. The analyses for eight forms of the pulse 
loads with the same pulse sizes but different durations were per-
formed. The parameters of the analysis for unfavourable forging 
conditions, that is, cold forging of steel at maximum velocity were 
determined. 
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To investigate the effect of the pulse shape and duration on 
the dynamic response of the hammer-foundation forging system, 
the maximum displacements, velocities and accelerations of the 
hammer and foundation as well as the maximum forces transmit-
ted to the soil were determined. 

The results of the numerical analyses as a set of graphs were 
presented. Based on the results of the analyses, it was found that: 

 A greater impact on the dynamic response of a forging system 
has the duration of a pulse than its shape; 

 The displacements, velocities and accelerations of the forging 
system components as well as the forces transmitted to the 
soil reach the highest values for the pulses with the shortest 
duration; 

 If the pulse duration is less than 0.01 s, the system response 
is insensitive to the shape of the pulse; 

 As the pulse duration increases, the response of the forging 
system decreases. 
Since, as the results of the analyses show, the shape of a 

pulse has a little effect on the dynamic response of the forging 
system, during the design work or checking the influence of the 
structure with known parameters on the soil and surroundings, 
theoretically, pulse loads of any shape can be used in calculation 
models. However, since with prolonging the pulse duration, the 
dynamic responses reach the highest values for the triangular 
pulse, it seems expedient to use this shape in the calculations. 

Due to the large impact of the pulse duration on the maximum 
displacements and velocities of the forging system components as 
well as the forces transmitted to the soil, it is important that the 
pulse duration corresponds to the real forging conditions. There-
fore, the analyses should be performed for the experimentally 
confirmed durations of the contact between the interacting materi-
als. 

If the results of the analyses show that for the adopted model 
parameters of the forging system, the permissible values of the 
foundation displacements (according to Lipiński (1985) and Major 
(1980)) or the permissible soil stress (according to Lipiński (1985)) 
have been exceeded and it is not possible to change these pa-
rameters, the only way to limit the negative impact of the forging 
hammer on the soil and surroundings will be such a modification 
of the parameters of the forming process, that will prolong the 
duration of contact between the interacting materials. The same 
actions should be taken to ensure the proper working conditions 

for hammerman when the permissible levels of the hammer vibra-
tion amplitudes are exceeded (according to Lipiński (1985) and 
Major (1980)). 
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