PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flood susceptibility mapping using advanced hybrid machine learning and CyGNSS: a case study of Nghe An province, Vietnam

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flooding is currently the most dangerous natural hazard. It can have heavy human and material impacts and, in recent years, flooding has tended to occur more frequently, due to changes our species has made to hydrological regimes, and due to climate change. It is of the utmost importance that new models are developed to predict and map food susceptibility with high accuracy, to support decision-makers and planners in designing more effective food management strategies. The objective of this study is the development of a new method based on state-of-the-art machine learning and remote sensing, namely random forest (RF), dingo optimization algorithm, a weighted chimp optimization algorithm (WChOA), and particle swarm optimization to build food susceptibility maps in the Nghe An province of Vietnam. The CyGNSS system was used to collect soil moisture data to integrate into the susceptibility model. A total of 1650 food locations and 14 conditioning factors were used to construct the model. These data were divided at a ratio of 60/20/20 to train, validate, and test the model, respectively. In addition, various statistical indices, namely root-mean-square error, receiver operation characteristic, mean absolute error, and the coefficient of determination (R2 ), were used to assess the performance of the model. The results for all the models were good, with an AUC value of+0.9. The RF-WChOA model performed best, with an AUC value of 0.99. The proposed models can predict and map food susceptibility with high accuracy.
Czasopismo
Rocznik
Strony
2785--2803
Opis fizyczny
Bibliogr. 88 poz.
Twórcy
  • Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • School of Aerospace Engineering (SAE), VNU University of Engineering and Technology (UET), Vietnam National University (VNU), Hanoi, Vietnam
  • Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • VNU Vietnam Japan University (VJU), Vietnam National University (VNU), Hanoi, Vietnam
  • Center for Interdisciplinary Integrated Technology Field Monitoring (FIMO), VNU University of Engineering and Technology (UET), Vietnam National University (VNU), Hanoi, Vietnam
  • Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Faculty of Hydrology, Meteorology and Oceanography, VNU University of Science, Vietnam National University, Hanoi, Vietnam
Bibliografia
  • 1. Ahmed IA, Talukdar S, Shahfahad, Parvez A, Rihan M, Baig MRI, Rahman A (2022) Flood susceptibility modeling in the urban watershed of Guwahati using improved metaheuristic-based ensemble machine learning algorithms. Geocarto Int 10(1080/10106049):2066200
  • 2. Almazán-Covarrubias JH, Peraza-Vázquez H, Peña-Delgado AF, García-Vite PM (2022) An improved Dingo optimization algorithm applied to SHE-PWM modulation strategy. Appl Sci 12:992
  • 3. Andaryani S, Nourani V, Haghighi AT, Keesstra S (2021) Integration of hard and soft supervised machine learning for flood susceptibility mapping. J Environ Manag 291:112731
  • 4. Anusha N, Bharathi B (2020) Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. Egypt J Rem Sens Space Sci 23:207–219
  • 5. Arora A, Arabameri A, Pandey M, Siddiqui MA, Shukla U, Bui DT, Mishra VN, Bhardwaj A (2021a) Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Sci Total Environ 750:141565
  • 6. Arora A, Pandey M, Siddiqui MA, Hong H, Mishra VN (2021c) Spatial flood susceptibility prediction in Middle Ganga Plain: comparison of frequency ratio and Shannon’s entropy models. Geocarto Int 36:2085–2116
  • 7. Bairwa AK, Joshi S, Singh D (2021) Dingo Optimizer: a nature-inspired metaheuristic approach for engineering problems. Math Problems Eng. https://doi.org/10.1155/2021/2571863
  • 8. Band SS, Janizadeh S, Chandra Pal S, Saha A, Chakrabortty R, Melesse AM, Mosavi A (2020) Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Rem Sens 12:3568
  • 9. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
  • 10. Bui Q-T (2019) Metaheuristic algorithms in optimizing neural network: a comparative study for forest fire susceptibility mapping in Dak Nong, Vietnam. Geomat Nat Hazards Risk 10:136–150
  • 11. Chen W, Hong H, Li S, Shahabi H, Wang Y, Wang X, Ahmad BB (2019) Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J Hydrol 575:864–873
  • 12. Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Wang X, Bian H, Zhang S, Pradhan B (2020) Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Sci Total Environ 701:134979
  • 13. Chicco D, Warrens MJ, Jurman G (2021) The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci 7:e623
  • 14. Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096
  • 15. Cortes C, Vapnik V (1995) Support Vector Machine. Mach Learn 20:273–297
  • 16. Costache R (2019) Flood susceptibility assessment by using bivariate statistics and machine learning models-a useful tool for flood risk management. Water Resour Manage 33:3239–3256
  • 17. Costache R, Arabameri A, Moayedi H, Pham QB, Santosh M, Nguyen H, Pandey M, Pham BT (2021) Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naïve Bayes, XGBoost and classification and regression tree. Geocarto Int 37:6780–6807
  • 18. Costache R, Pham QB, Avand M, Linh NTT, Vojtek M, Vojteková J, Lee S, Khoi DN, Nhi PTT, Dung TD (2020) Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment. J Environ Manag 265:110485
  • 19. Crane R, Roosta F (2019) DINGO: distributed Newton-type method for gradient-norm optimization. Advances in neural information processing systems 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf
  • 20. Dasallas L, Kim Y, An H (2019) Case study of HEC-RAS 1D–2D coupling simulation: 2002 Baeksan flood event in Korea. Water 11:2048
  • 21. de Santana FB, de Souza AM, Poppi RJ (2018) Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters. Spectrochim Acta Part A Mol Biomol Spectrosc 191:454–462
  • 22. Ding L, Ma L, Li L, Liu C, Li N, Yang Z, Yao Y, Lu H (2021) A Survey of remote sensing and geographic information system applications for flash floods. Rem Sens 13:1818
  • 23. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS'95 Proceedings of the sixth international symposium on micro machine and human science. IEEE. pp 39–43
  • 24. El-Haddad BA, Youssef AM, Pourghasemi HR, Pradhan B, El-Shater A-H, El-Khashab MH (2021) Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin. Egypt Nat Hazards 105:83–114
  • 25. Eroglu O, Kurum M, Boyd D, Gurbuz AC (2019) High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks. Rem Sens 11:2272
  • 26. Filipponi F (2019) Sentinel-1 GRD preprocessing workflow. Multidiscip Digit Publ Inst Proc 18:11
  • 27. Ha H, Luu C, Bui QD, Pham D-H, Hoang T, Nguyen V-P, Vu MT, Pham BT (2021) Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models. Nat Hazards 109:1247–1270
  • 28. Hermas E, Gaber A, El Bastawesy M (2021) Application of remote sensing and GIS for assessing and proposing mitigation measures in flood-affected urban areas, Egypt. Egypt J Rem Sens Space Sci 24:119–130
  • 29. Hicks F, Peacock T (2005) Suitability of HEC-RAS for flood forecasting. Can Water Resourc J 30:159–174
  • 30. Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu A-X, Chen W, Kougias I, Kazakis N (2018) Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ 621:1124–1141
  • 31. Islam ARMT, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12:101075
  • 32. Jabbar NMA, Mitras BA (2021) Modified chimp optimization algorithm based on classical conjugate gradient methods. Journal of Physics: Conference Series. IOP Publishing. p 012027
  • 33. Jia H, Sun K, Zhang W, Leng X (2021) An enhanced chimp optimization algorithm for continuous optimization domains. Complex Intell Syst 8:65–82
  • 34. Kadam P, Sen D (2012) Flood inundation simulation in Ajoy River using MIKE-FLOOD. ISH J Hydraul Eng 18:129–141
  • 35. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE. pp 1942–1948
  • 36. Khan A, Govil H, Khan HH, Thakur PK, Yunus AP, Pani P (2022) Channel responses to flooding of Ganga River, Bihar India, 2019 using SAR and optical remote sensing. Adv Space Res 69:1930–1947
  • 37. Khishe M, Nezhadshahbodaghi M, Mosavi MR, Martín D (2021) A weighted chimp optimization algorithm. IEEE Access 9:158508–158539
  • 38. Khoirunisa N, Ku C-Y, Liu C-Y (2021) A GIS-based artificial neural network model for flood susceptibility assessment. Int J Environ Res Public Health 18:1072
  • 39. Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I, Prakash I, Bui DT (2018) A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ 627:744–755
  • 40. Kubal C, Haase D, Meyer V, Scheuer S (2009) Integrated urban flood risk assessment—adapting a multicriteria approach to a city. Nat Hazard 9:1881–1895
  • 41. Lee JE, Heo J-H, Lee J, Kim NW (2017a) Assessment of flood frequency alteration by dam construction via SWAT simulation. Water 9:264
  • 42. Lee KY, Park J-B (2006) Application of particle swarm optimization to economic dispatch problem: advantages and disadvantages. In: 2006 IEEE PES power systems conference and exposition. IEEE. pp 188–192
  • 43. Lee S, Kim J-C, Jung H-S, Lee MJ, Lee S (2017b) Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomat Nat Haz Risk 8:1185–1203
  • 44. Li X, Du Z, Huang Y, Tan Z (2021) A deep translation (GAN) based change detection network for optical and SAR remote sensing images. ISPRS J Photogramm Rem Sens 179:14–34
  • 45. Liu Y, Qian J, Yue H (2020) Combined Sentinel-1A with Sentinel-2A to estimate soil moisture in farmland. IEEE J Sel Top Appl Earth Observ Rem Sens 14:1292–1310
  • 46. Luu C, Pham BT, Van Phong T, Costache R, Nguyen HD, Amiri M, Bui QD, Nguyen LT, Van Le H, Prakash I (2021) GIS-based ensemble computational models for flood susceptibility prediction in the Quang Binh Province, Vietnam. J Hydrol 599:126500
  • 47. Massari C, Brocca L, Moramarco T, Tramblay Y, Lescot J-FD (2014) Potential of soil moisture observations in flood modelling: estimating initial conditions and correcting rainfall. Adv Water Resour 74:44–53
  • 48. Meles MB, Younger SE, Jackson CR, Du E, Drover D (2020) Wetness index based on landscape position and topography (WILT): modifying TWI to reflect landscape position. J Environ Manag 255:109863
  • 49. Melkamu T, Bagyaraj M, Adimaw M, Ngusie A, Karuppannan S (2022) Detecting and mapping flood inundation areas in Fogera-Dera Floodplain, Ethiopia during an extreme wet season using Sentinel-1 data. Phys Chem Earth Parts a/b/c 127:103189
  • 50. Mirzaei S, Vafakhah M, Pradhan B, Alavi SJ (2021) Flood susceptibility assessment using extreme gradient boosting (EGB). Iran Earth Sci Inform 14:51–67
  • 51. Nguyen HD (2022) GIS-based hybrid machine learning for flood susceptibility prediction in the Nhat Le–Kien Giang watershed. Vietnam Earth Sci Inf. https://doi.org/10.1007/s12145-022-00825-4
  • 52. Nguyen HD, Ardillier-Carras F, Touchart L (2018) Les paysages de rizières et leur évolution récente dans le delta du fleuve Gianh. Cybergeo Eur J Geogr. https://doi.org/10.4000/cybergeo.29826
  • 53. Nguyen HD, Nguyen Q-H, Du QVV, Nguyen THT, Nguyen TG (2021) Bui Q-T (2021) A novel combination of Deep Neural Network and Manta Ray Foraging Optimization for flood susceptibility mapping in Quang Ngai Province, Vietname. Geocarto Int 10(1080/10106049):1975832
  • 54. Nguyen HD, Quang-Thanh B, Nguyen Q-H, Nguyen TG, Pham LT, Nguyen XL, Vu PL, Thanh Nguyen TH, Nguyen AT, Petrisor A-I (2022) A novel hybrid approach to flood susceptibility assessment based on machine learning and land use change. Case study: a river watershed in Vietnam. Hydrol Sci J 67:1065–1083
  • 55. Norbiato D, Borga M, Degli Esposti S, Gaume E, Anquetin S (2008) Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged basins. J Hydrol 362:274–290
  • 56. Patro S, Chatterjee C, Mohanty S, Singh R, Raghuwanshi N (2009) Flood inundation modeling using MIKE FLOOD and remote sensing data. J Indian Soc Rem Sens 37:107–118
  • 57. Peraza-Vázquez H, Peña-Delgado AF, Echavarría-Castillo G, Morales-Cepeda AB, Velasco-Álvarez J, Ruiz-Perez F (2021) A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies. Math Problems Eng. https://doi.org/10.1155/2021/9107547
  • 58. Petrişor A-I, Hamma W, Nguyen HD, Randazzo G, Muzirafuti A, Stan M-I, Tran VT, Aştefănoaiei R, Bui Q-T, Vintilă D-F (2020) Degradation of coastlines under the pressure of urbanization and tourism: evidence on the change of land systems from Europe. Asia Africa Land 9:275
  • 59. Pham BT, Avand M, Janizadeh S, Phong TV, Al-Ansari N, Ho LS, Das S, Le HV, Amini A, Bozchaloei SK (2020) GIS based hybrid computational approaches for flash flood susceptibility assessment. Water 12:683
  • 60. Pham BT, Luu C, Phong TV, Trinh PT, Shirzadi A, Renoud S, Asadi S, Le HV, von Meding J, Clague JJ (2021a) Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? J Hydrol 592:125615. https://doi.org/10.1016/j.jhydrol.2020.125615
  • 61. Pham BT, Luu C, Van Dao D, Van Phong T, Nguyen HD, Van Le H, von Meding J, Prakash I (2021b) Flood risk assessment using deep learning integrated with multi-criteria decision analysis. Knowl-Based Syst 219:106899
  • 62. Piragnolo M, Masiero A, Pirotti F (2017) Comparison of random forest and support vector machine classifiers using UAV remote sensing imagery. In: EGU General Assembly Conference Abstracts
  • 63. Prasad P, Loveson VJ, Das B, Kotha M (2021) Novel ensemble machine learning models in flood susceptibility mapping. Geocarto Int 37(16):4571–4593
  • 64. Rahmati O, Pourghasemi HR, Zeinivand H (2016) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int 31:42–70
  • 65. Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their applications to data clustering. Artif Intell Rev 35:211–222
  • 66. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Chang 2:248–253
  • 67. Ruidas D, Chakrabortty R, Islam ARM, Saha A, Pal SC (2022) A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India. Environ Earth Sci 81:1–22
  • 68. Sachdeva S, Bhatia T, Verma A (2017) Flood susceptibility mapping using GIS-based support vector machine and particle swarm optimization: a case study in Uttarakhand (India). In: 2017 8th international conference on computing, communication and networking technologies (ICCCNT). IEEE. pp 1–7
  • 69. Saha TK, Pal S, Talukdar S, Debanshi S, Khatun R, Singha P, Mandal I (2021) How far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region. J Environ Manag 297:113344. https://doi.org/10.1016/j.jenvman.2021.113344
  • 70. Sahana M, Patel PP (2019) A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environ Earth Sci 78:1–27
  • 71. Saleem Ashraf ML, Iftikhar M, Ashraf I, Hassan ZY (2017) Understanding flood risk management in Asia: concepts and challenges. In: Flood risk management; InTechOpen: London
  • 72. Schumann GJ-P, Moller DK (2015) Microwave remote sensing of flood inundation. Phys Chem Earth Parts a/b/c 83:84–95
  • 73. Senyurek V, Lei F, Boyd D, Kurum M, Gurbuz AC, Moorhead R (2020) Machine learning-based CYGNSS soil moisture estimates over ISMN sites in CONUS. Rem Sens 12:1168
  • 74. Shahabi H, Shirzadi A, Ronoud S, Asadi S, Pham BT, Mansouripour F, Geertsema M, Clague JJ, Bui DT (2021) Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geosci Front 12:101100
  • 75. Tang X, Machimura T, Liu W, Li J, Hong H (2021) A novel index to evaluate discretization methods: a case study of flood susceptibility assessment based on random forest. Geosci Front 12:101253. https://doi.org/10.1016/j.gsf.2021.101253
  • 76. Taylor J, Man Lai K, Davies M, Clifton D, Ridley I, Biddulph P (2011) Flood management: prediction of microbial contamination in large-scale floods in urban environments. Environ Int 37:1019–1029
  • 77. Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79
  • 78. Tehrany MS, Pradhan B, Mansor S, Ahmad N (2015) Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA 125:91–101
  • 79. Tien Bui D, Khosravi K, Li S, Shahabi H, Panahi M, Singh VP, Chapi K, Shirzadi A, Panahi S, Chen W (2018) New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water 10:1210
  • 80. Towfiqul Islam ARM, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12:101075. https://doi.org/10.1016/j.gsf.2020.09.006
  • 81. Vojtek M, Vojteková J, Costache R, Pham QB, Lee S, Arshad A, Sahoo S, Linh NTT, Anh DT (2021) Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional flood susceptibility mapping: a case study from Slovakia. Geomat Nat Haz Risk 12:1153–1180
  • 82. Wanders N, Karssenberg D, De Roo A, De Jong S, Bierkens M (2014) The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol Earth Syst Sci 18:2343–2357
  • 83. Wang J, Khishe M, Kaveh M, Mohammadi H (2021) Binary Chimp Optimization Algorithm (BChOA): a New Binary Meta-heuristic for solving optimization problems. Cogn Comput 13:1297–1316
  • 84. Wang Y, Hong H, Chen W, Li S, Panahi M, Khosravi K, Shirzadi A, Shahabi H, Panahi S, Costache R (2019) Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J Environ Manag 247:712–729
  • 85. Youssef AM, Pradhan B, Hassan AM (2011) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci 62:611–623
  • 86. Yu D, Xie P, Dong X, Hu X, Liu J, Li Y, Peng T, Ma H, Wang K, Xu S (2018) Improvement of the SWAT model for event-based flood simulation on a sub-daily timescale. Hydrol Earth Syst Sci 22:5001–5019
  • 87. Zaharia L, Costache R-D, Prăvălie R, Ioana-Toroimac G (2017) Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania). Front Earth Sci 11:229–247. https://doi.org/10.1007/s11707-017-0636-1
  • 88. Zhang Y, Zhang H, Lin H (2014) Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens Environ 141:155–167
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-585262a2-79e4-4789-937c-73d5c0ead1a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.