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Abstract  
 
Classification theory analytical paradigm investigates continuous data only. When we deal with 
a mix of continuous and nominal attributes in data records, difficulties emerge. Usually, the 
analytical paradigm treats nominal attributes as continuous ones via numerical coding of nom-
inal values (often a bit ad hoc). We propose a way of keeping nominal values within analytical 
paradigm with no pretending that nominal values are continuous. The core idea is that the 
information hidden in nominal values influences on metric (or on similarity function) between 
records of continuous and nominal data. Adaptation finds relevant parameters which influ-
ence metric between data records. Our approach works well for classifier induction algorithms 
where metric or similarity is generic, for instance k nearest neighbor algorithm or proposed 
here support of decision tree induction by similarity function between data. The k-nn algo-
rithm working with continuous and nominal data behaves considerably better, when nominal 
values are processed by our approach. Algorithms of analytical paradigm using linear and 
probability machinery, like discriminant adaptive nearest-neighbor or Fisher’s linear discrimi-
nant analysis, cause some difficulties. We propose some possible ways to overcome these ob-
stacles for adaptive nearest neighbor algorithm.  
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1 Introduction  
 
Classification theory seems to be divided into analytical paradigm investigating continuous 
data only and combinatorial paradigm investigating nominal data only. When we deal with  
a mix of continuous and nominal attributes in data records, difficulties emerge. Usually, the 
combinatorial paradigm treats continuous attributes as nominal ones via discretization. In 
spite of several objections that can be raised (for instance, we pretend in this way that contin-
uous data are nominal, while they are not), the methods of discretization are more or less 
canonical, are based on theory which progresses and very often gives good results in applica-
tions (see [1]).  
 On the other hand, the analytical paradigm treats nominal attributes as continuous ones 
via numerical coding of nominal values (often a bit ad hoc). There are no canonical methods 
which find appropriate numerical coding of nominal values. Known algorithms are very dif-
ferent and apparently non uniform. We can raise well known objections against the idea of 
numerical coding of nominal values within analytical paradigm of classification theory.  

• Usually attributes are inherently nominal (for example attribute sex). After numerical 
coding values like “one and a half of female sex” can appear in computations and their 
results may not be credible.    

• Assume that the analysis of semantic of nominal values gives some numerical coding 
that can be accepted as reasonable. Then we have to deal with a nontrivial problem of 
proper rescaling remaining continuous attributes.  

Majority of analytical paradigm algorithms heavily use continuous linear and probability ma-
chinery. It is hard to include discrete values without breaking out the basic principles behind 
these algorithms. This objection also concerns the reasonable Bayesian numerical coding of 
nominal values (scoring methods, see [2]). We propose a way of keeping nominal values within 
analytical paradigm without pretending that nominal values are continuous. The core idea is 
that the information hidden in nominal values influences metric (or on similarity function) 
between data records. We take the Hamming distance between nominal parts of data records 
as the leading parameter influencing metric (or similarity) between data records. Formal defi-
nitions based on kernel functions implementing our idea are given in section 2. Examples of 
basic kernel functions are given as well. As far as we know our approach works well for 
classifier induction algorithms where metric or similarity is generic (for instance k nearest 
neighbor algorithm or proposed here support of decision tree induction by similarity function 
between data).  
 In section 3, we define modifications of k-nearest neighbor algorithm in order to process 
mix of continuous and nominal data. Particular kernel functions are involved. Adaptation is 
used in order to find kernels parameters influencing metric or similarity between data records. 
The choice of these additional parameters depends on particular kernel function used by the 
algorithm. Equipped with similarity between data we define a new version of decision tree 
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induction. We think that classic rule induction algorithms can be enhanced with similarity 
between data as well. We end this section with a proposal of k-means clustering algorithm 
processing mix of continuous and nominal data.  
 The results of introductory experiment with k-nn algorithm on real data set are described 
in section 4. This algorithm behaves considerably better, when nominal data are processed in 
accordance with our approach. Classification accuracy given by cross-validation method is 
about 6-8% better than the accuracy of algorithm with ad hoc nominal numerical coding. It 
seems that the idea has some significance. Algorithms of analytical paradigm using linear and 
probability machinery, like discriminant adaptive nearest-neighbor (DANN) or Fisher’s linear 
discriminant analysis (LDA), cause difficulties when we try to generalize them for mix of 
continuous and nominal data. The source of these problems is the fact, that these algorithms 
are not generic with respect to metric between data.  
 In section 5, we sketch some possible way to overcome these difficulties for DANN algo-
rithm. We propose to use the results of computational geometry on low-distortion embedding 
of finite metric spaces into linear spaces (see [3], [4]). The algorithms like Fisher’s linear dis-
criminant analysis are immune against approach which use embedding of suitable finite metric 
spaces into linear spaces. Our work on generalization for mix of continuous and nominal data 
of analytical paradigm algorithms using linear and probability machinery is at the very begin-
ning stage yet.  
 
2  Metrics and similarities via kernel functions 
 
Let p be a number of continuous attributes. Let s be a number of nominal attributes. Let for j 
= 1, 2, . . . , s  Aj = be a finite domain of values of the j-th nominal attribute. We present 
records as a pairs of continuous and nominal data r = ( x, n) where ݔ ∈ ܴ௣ and ݊ ∈ ଵܣ ×. .  ௦ . In the sequel p denotes the dimension of continuous data and s denotes the number ofܣ×.
nominal attributes.  
 Let ݊ ଵ = ,ଵଵݒ) . . . , ,(௦ଵݒ ݊ଶ = ,ଵଶݒ) . . . , (௦ଶݒ ∈ ଵܣ ×. . .× -௦ be the nominal parts of data recܣ
ords r1=(x1, n1), r2=(x2,n2). We define the Hamming distance between nominal parts of records 
r1, r2 as follows:  ܪ(݊ଵ, ݊ଶ) = |൛	݆	ห1 ≤ ݆ ≤ ௝ଵݒ	݀݊ܽ	ݏ ≠ ݏ|௝ଶൟݒ  

For a given 0 ≤ ߝ < ,ఌ(݊ଵܪ we define the Hamming distance ݏ/1 ݊ଶ)	that we shall deal with.  ܪఌ(݊ଵ, ݊ଶ) = ,ଵ݊)ܪ	݂݅ ݊ଶ) > ,ଵ݊)ܪ	ℎ݁݊ݐ	0 ݊ଶ)	݈݁݁ݏ	ɛ 
Parameter ɛ is involved since it is useful in defining some kernel functions like spherical kernel 
defined in the sequel. We define now kernel function. Let 0 ≤ ߝ <  be an arbitrary set real ݏ/1
number.  
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Def. 1. A function ܭఌ	: ,ߝ] +∞) × ܴ௣ 	×	ܴ௣ 	→ 		ܴା	is a kernel function if the following con-
ditions hold:  

ݔ∀ .1 ∈ ܴ௣. ∀ܽ ∈ ,ߝ] +∞). ,ܽ)ఌܭ ,ݔ (ݔ = 0  
,ݔ∀ .2 ݕ ∈ ܴ௣. ∀ܽ ∈ ,ߝ] +∞). ,ܽ)ఌܭ ,ݔ (ݕ = ,ܽ)ఌܭ ,ݕ   (ݔ
,ݔ∀ .3 ,ݕ ݖ ∈ ܴ௣. ∀ܽ ∈ ,ߝ] +∞). ,ܽ)ఌܭ ,ݔ (ݕ ≤ ,ܽ)ఌܭ ,ݔ (ݖ + ,ܽ)ఌܭ ,ݖ   (ݕ
4. ∀ܽଵ, ܽଶ ∈ ,ߝ] +∞). ,ݔ∀ ݕ ∈ ܴ௣. (ܽଵ > ܽଶ → ,ఌ(ܽଵܭ	 ,ݔ (ݕ > ,ఌ(ܽଶܭ ,ݔ  □         ((ݕ

The first three conditions say that for set ܽ ∈ ,ߝ] +∞) the function ܭఌ(ܽ,∙,∙):	ܴ௣ × ܴ௣ →ܴା	is a metric on ܴ௣. Fourth one says that parameterized by a distance ܭఌ(ܽ,∙,∙) is growing 
when a is growing.  
 Assume we are given a kernel function	ܭఌ(ܽ, ,ݔ -Similarity function between data rec .(ݕ
ords	ݎଵ = ,ଵݔ) ݊ଵ), ଶݎ = ,ଶݔ) ݊ଶ) is defined by ݎ)ߩଵ, (ଶݎ = ,ఌ(݊ଵܪ)ఌܭ ݊ଶ), ,ଵݔ  (ଶݔ
The function ρ is a similarity between data records since it is reflexive and symmetric.  
 
Examples of kernel functions 
 
1.  Additive kernel (the idea of Jakub Zahorski [5]).   
 
Let 0 ≤ ߙ ≤ 1 be a given weight and let ɛ=0. ܭఌ(ܽ, ,ݔ (ݕ = ߙ ∗ ,ݔ	݊݁݁ݓݐܾ݁	݁ܿ݊ܽݐݏ݅݀	݈݊ܽ݅݀݅ܿݑܧ	0,1ሿ]	݋ݐ	݀݁ݖ݈݅ܽ݉ݎ݋݊݁ݎ) 1)+	(ݕ − (ߙ ∗ ܽ	
 induced similarity function by additive kernel is a metric for data records. 
 
2.  Spherical Gaussian kernel  
 
Let ܽ ∈ ܴା be given and let ɛ=0. (The Hamming distance H(n,m) will be taken as a). Let v = 
1/(2π*a2/p). Let ∑a be a diagonal matrix with v value on diagonal. Gaussian multivariate density 
function f with ∑a as the covariance matrix is taken. We use the known formula: 
 ௔݂(ݔ, (ݕ = ݁(ቀିଵଶቁ∗(௫ି௬)೅∑ೌషభ(௫ି௬)) ௣/ଶൗ(ߨ2) |∑௔	|ଵ/ଶ	
 
 where |∑a| is determinant of ∑a and ݔ, ݕ ∈ ܴ௣.  Hence, the given ܽ ∈ ܴା is viewed as the 
“height” of spherical Gaussian multivariate density. We define now spherical Gaussian kernel 
(Fig. 1) by ܭఌ(ܽ, ,ݔ (ݕ = ,ݔ൫	ݏݐ݊݅݋݌	ℎ݁ݐ	݂݋	௣ାଵܴ	݊݅	݁ܿ݊ܽݐݏ݅݀	݈݊ܽ݅݀݅ܿݑܧ ௔݂(ݔ, ,൯(ݔ ൫ݕ, ௔݂(ݔ,  .൯(ݕ
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Figure 1. Spherical Gaussian kernel for p=1 
 

3. Elliptical Gaussian kernel  
 
Let ܽ ∈ ܴା be given and let ɛ=0. Let ∑௔ be an arbitrary symmetric matrix such that  ܽ ௣/ଶ(ߨ2))/1= ∗ |∑௔|ଵ/ଶ (a is viewed as the height of Gaussian density). Again we use Gaussian 
multivariate density ௔݂(ݔ,  :with ∑௔ as covariance matrix now (ݕ
 ௔݂(ݔ, (ݕ = ݁(ቀିଵଶቁ∗(௫ି௬)೅∑ೌషభ(௫ି௬)) ௣/ଶൗ(ߨ2) |∑௔	|ଵ/ଶ 
 
We define elliptical Gaussian kernel by ܭఌ(ܽ, ,ݔ (ݕ = ,ݔ൫	ݏݐ݊݅݋݌	ℎ݁ݐ	݂݋	௣ାଵܴ	݊݅	݁ܿ݊ܽݐݏ݅݀	݈݊ܽ݅݀݅ܿݑܧ ௔݂(ݔ, ,൯(ݔ ,ݕ) ௔݂(ݔ,  ((ݕ
It does not have anything in common with probability here. We have chosen Gaussian kernels 
in order to obtain exponential influence of parameter a on similarity between x, y. Other ker-
nels can give similar effect also.  
 
4. Spherical kernel  

 
Let 0 < ߝ <  be given. Let us consider the set D = {ɛ, 1/s, . . . , s-1/s, 1} of all possible ݏ/1
values of Hamming distance ܪఌ between nominal parts of data records. Let for ܽ ∈ ,ܦ ܵ௣(ܽ) 
be a p-dimensional sphere in ܴ௣ାଵ lying with its south pole somewhere on p-dimensional 
hyperplane P in	ܴ௣ାଵ. We consider the spheres ܵ௣(ܽ) with their north pole removed. For 
each	ܽ ∈ ܲ	:ℎ௔ ,ܦ → ܵ௣(ܽ) is the stereographical embedding of P in	ܵ௣(ܽ).We define spher-
ical kernel by 
,ܽ)ఌܭ    ,ݔ (ݕ = ,(ݔ)ℎ௔	ݏݐ݊݅݋݌	ℎ݁ݐ	݂݋	(ܽ)௣ܵ	݊݋	݁ܿ݊ܽݐݏ݅݀	݈ܽܿ݅ݎℎ݁݌ݏ ℎ௔(ݕ). 
Ellipsoids or other affine images of spheres could be used instead of spheres as well.  
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3 Algorithms  
 
In this section we show that our approach works for classifier induction algorithms using 
similarity (or metric) between data in order to construct a classifier. The known example is the 
k nearest (k most similar, when similarity instead of metric is used) neighbor algorithm (k-nn 
algorithm).  We use defined in [6] tolerance between data sets in order to inject similarity be-
tween data into computation of decision tree induction algorithm. Thus we obtain a new ver-
sion of decision tree induction where our approach is applicable. We think that a similar result 
can be obtained for rule induction algorithms. The third example where our approach works 
is defined here modification of k means clustering algorithm processing records of continuous 
and nominal data. No values like “one and a half of female sex” are involved.  
 
K-nearest neighbor for continuous and nominal data modulo a kernel function 
 
Assume we are given a similarity function (or metric) between data records. K-nn works as 
follows: for a given record r which is to be classified compute the set N of k most similar to  
r records of the training set. Next we assign r to the most frequent class in N.  
 
1.  K-nn modulo additive kernel 
Adapt a weight 0 ≤ ߙ ≤ 1 (see the definition of additive kernel) in order to minimize, com-
puted via cross-validation, classification error. Classify by k-nn with respect to metric induced 
by additive kernel with optimal α selected by adaptation.  
 
2. K-nn modulo spherical Gaussian kernel  
Rescaling the height of spherical multivariate Gaussian density factor h>0 as adaptation pa-
rameter is taken. The definition of the similarity function that we work with is the following:  ݎ)ߩଵ, (ଶݎ = ఌ(ℎܭ ∗ ,ఌ(݊ଵܪ ݊ଶ), ,ଵݔ -ఌ is the spherical Gaussian kernel. K-nn modܭ ଶ)  whereݔ
ulo this kernel works as follows: adapt the rescaling factor h in order to minimize, computed 
via cross-validation, classification error. Classify by k-nn with respect to similarity induced by 
spherical Gaussian kernel with optimal h selected by adaptation.  
 Several different techniques where used as adaptive methods in our introductory experiment.   
 
3. K-nn modulo elliptical Gaussian kernel 
Covariance matrix in Gaussian multivariate density formula determines the elliptical shape of 
its density function. We propose to adapt this shape for each possible Hamming distance 
 ܽ ∈ ܦ = {0, ,ݏ/1 . . . , ݏ − ,ݏ/1 1}	separately. Let for a given ܽ ∈ -a be a symmetrical ma∑ ,ܦ
trix such that a=1 / ((2π)p/2 *|∑a |1 /2 ) – we enforce here that the height of Gaussian multi-
variate density is equal to a. K-nn modulo elliptical Gaussian kernel works as follows: adapt 
matrices ∑a in order to minimize, computed via cross-validation, classification error. Classify 

30



Metrics and similarities in modeling dependencies between continuous and nominal data 

by k-nn with respect to similarity induced by elliptical Gaussian kernel with optimal matrices 
∑a selected by adaptation. Unfortunately, we have quite a lot of adaptation parameters: 
(s+1)*p2/2, where p is the dimension of continuous data, s is the number of nominal attributes 
in data records. It is plain enough that the problem of Gaussian elliptical kernel shape adapta-
tion requires further study.  
 
Decision tree induction for continuous and nominal data modulo a kernel function 
 
The essence of decision tree induction is the test choice criterion: which one of the currently 
available tests should be placed into the node under construction? We shall sketch a formali-
zation of the following heuristics: the test should divide the current training set into subsets 
as dissimilar as possible while the elements within each subset should be as similar as possible. 
The similarity function between data sets defined in [6] is used. 
 Let ρ be a similarity function on data records and  ݎݐ ∈ ܴା be a certain threshold. We work 
with environments	݊(ݎ) = ,ݎ)ߩ|ᇱݎ} (ᇱݎ <  where r, r’ are data records. Let X, Y be the ,{ݎݐ
sets of data records. The degree of inclusion of X in Y is defined as follows:  ߴ(ܺ, ܻ) = ݎ}| ∈ ′ݎ∃|ܺ ∈ ′ݎ		.ܻ ∈ |ܺ||(ݔ)݊  

Therefore if  ݎ ∈ ܺ has a similar to r record ݎ′ ∈ ܻ then r is considered as element of Y. The 
similarity between data sets X, Y is defined (see [6]) as follows:  ߬(ܺ, ܻ) = min	(ߴ(ܺ, ܻ), ,ܻ)ߴ ܺ)) 
The value τ(X,Y) near 0 means that X, Y are dissimilar; τ(X,Y) near 1 means that X, Y are 
similar. The similarity τ(X,Y) has nothing to do with Lopez de Mantaras distance between tests 
(see [7]). Let T={r1,. . . ,rn} be a current training set and let us assume that a test t divides T 
into subsets T1,. . . ,Tm. Let	ݏ = ∑ ߬( ௜ܶ, ௝ܶ)௜ழ௝ , ݀௜௝ = ߬( ௜ܶ, ௝ܶ)/ݏ – renormalized to [0,1] sim-
ilarity ߬( ௜ܶ, ௝ܶ). Let E be the entropy of renormalized to [0,1] similarities ߬( ௜ܶ, ௝ܶ): ܧ =−∑ ݀௜௝௜ழ௝ ∗ log	(݀௜௝). Let m be the arithmetic mean of the similarities	߬( ௜ܶ , ௝ܶ), i<j. Finally, 
let E(t) be the classic entropy of the test t, measuring disorder in the inherited from T partitions 
of the sets Ti into classification categories.  

 We can now formulate our test choice criterion: choose the test t such that	(ா(௧)∗௠ா ) →݉݅݊. This means that the chosen test t should minimize disorder in partitions of Ti into classes 
and mean similarity between Ti, Tj should be small (i.e. Ti, Tj should be dissimilar) and renor-
malized to [0,1] similarities ߬( ௜ܶ, ௝ܶ) should be more or less close to each other. Notice that 
our test choice criterion depends on accepted threshold tr of similarity environments n(r).  
 Let us choose a kernel function K. Assume that adaptation parameters Q={q1,. . . ,qa } are 
related to kernel K. Decision tree induction modulo kernel K works as follows: adapt threshold 
tr and parameters Q in order to minimize, computed via cross-validation, classification error.  
Decision trees constructed at the consecutive stages of adaptation are built by decision tree 
induction equipped with defined above test choice criterion. This criterion is determined by 
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the current threshold tr and by similarity function induced by kernel K and current values of 
parameters Q.  Classify by decision tree T which is built with respect to selected parameters 
by adaptation. These parameters define test choice criterion that the decision tree induction 
algorithm is working with.  
 Tree built by the classic decision tree induction with entropy driven test choice criterion 
tends to overfit to training set (see [8]). We hope that our version of decision tree induction 
is less vulnerable to overfitting. Decision trees process continuous and nominal attributes 
equally well and no numerical coding of nominal values is involved. Nevertheless, if the 
dependencies between continuous and nominal data are controlled by a more subtle kernel, 
then presented version of decision tree induction can make sense. On the other hand we 
wanted to show that some known classifier induction algorithms can be supported by simi-
larity function or by metric.  
 
K clustering for continuous and nominal data modulo a kernel function   
 
The heart of k means clustering is the algorithm computing the mean (with respect to metric, 
or similarity, under consideration) record r=(x,n) of the given finite set X of records. The 
problem is that we are not allowed to use linear space structure (for example no computations 
like (r + r’)/2, where r, r’ are data records). The algorithm must be generic with respect to 
metric (or similarity) between data records since otherwise our approach will not be applicable. 
We define here a preliminary generic, with respect to metric function, algorithm computing 
mean record.  
 Let ρ be a metric (or similarity) under consideration. Let X be a finite set of  records for 
which the mean record is to be found. Let us assume for a while that we have determined  
a finite set Y of  candidates for mean record of  X. Let r be an arbitrary chosen record. Let 

σr =	∑ ,ݎ)ߩ ᇱ)௥ᇱఢ௑ݎ . Let Er = −∑ ఘ൫௥,௥ᇲ൯ఙೝ ∗ log	(ఘ൫௥,௥ᇲ൯ఙೝ )௥ᇱ∈௑  – the entropy of renormalized to 

[0,1] distances ρ(r,r’). We choose r from Y, as mean record of X, such that	ఙೝாೝ → ݉݅݊. It means 

that the sum σr should be possibly small while the distances ρ(r,r’), ݎ′ ∈ ܺ should be close to 
each other. Now we should construct a finite set Y of candidates for mean record of X.  
 Assume that X = {r1, . . . ,rn} and for i = 1, . . . ,n  ri = (xi, ni), ݔ௜ ∈ ܴ௣, ݊௜ ∈ ଵܣ ×. . .×  ,௦ܣ
where for j=1,. . .,s  Aj is the finite domain of j-th nominal attribute. Let CX = {x1, . . . , xn}. 
Let R be a cube in Rp covering CX.  Let CY be a finite set of a lattice points of cube R. The 
density of lattice is determined by chosen parameter ɛ>0.  
 We take Y = CY× ଵܣ) ×. . .×  ௦) as the set of candidates for mean record of X. k meansܣ
clustering modulo a kernel K works with respect to distance between records of continuous 
and nominal data induced by kernel K and it uses defined above algorithm computing mean 
records of current clusters.  
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 Above version of k means clustering shows that it possible to develop clustering algo-
rithms processing records of continuous and nominal data with no numerical coding of 
nominal values.  
 
4 Introductory experiment  
 
During our work some preliminary tests were made. We found out that kernel approach works 
better than other solutions when we have to deal with continuous-nominal attributes mix. We 
used k nearest (most similar) neighbor algorithm with different distance and kernel functions. 
Each function classification accuracy (for a given parameter k) is a mean value of series of 
tests using 10-fold cross validation. As a classification rule we simply adopt most frequent 
class amongst k nearest neighbors. Tested functions are: Euclidean distance, additive kernel 
and spherical Gaussian kernel (Fig. 2). Several algorithms from MATLAB’s Optimization 
Toolbox were used to adapt kernels parameters in order to minimize classification error. 
 For our experiment we used Australian credit approval data set (see [9]). This data set is 
interesting, because there’s a good mixture of attributes – continuous, nominal with small and 
large number of values. Before any test was conducted all continuous values were rescaled to ࡺ(૙, ૚) normal distribution and nominal values were coded as natural numbers. In this par-
ticular data set records are classified into one of two classes.  It’s one of the reasons why we’ve 
decided to additionally examine Euclidean distance function with Bayesian coding. 
 
 

 
 
Figure 2. Classification accuracy for tested functions 
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Presented figure shows classification accuracy (0...1) for different distance and kernel func-
tions. In general additive kernel produced best results. Classification accuracy increase varies 
from 0.61 to almost 0.74 comparing to regular Euclidean distance. Best results were obtained 
for	0.2 < ߙ < 0.3. It looks like, in selected range, additive kernel classification accuracy mon-
otonically grows within growth of the k parameter. Spherical Gaussian kernel also produced 
very good results. Its adaptation parameter (as well as result) dependency on k is not trivial 
and needs to be examined more. Classification accuracy gains almost 0.8 in the best solution. 
Although Euclidean distance with Bayesian coding gave quite good results one must realize 
that it works fine only when it deals with two classes of data. Our approach does not suffer 
from this weakness. Table below presents the best result for each distance/kernel function. 
 
Table 1. Best result for tested functions 
 

Function Best classification accuracy 

Euclidean distance 0.8031449 

Euclidean distance with Bayesian coding 0.8584058 

Spherical Gaussian kernel 0.8735178 

Additive kernel 0.8701449 

 
Introductory experiment has shown that the idea of kernel functions is worth exploring fur-
ther. All tests have a very basic nature.  There are still a lot of open questions and tests to run. 
We’re looking forward to obtain results from different data sets. Remaining kernels need to 
be examined as well. Also we would like to compare our results with other algorithms includ-
ing these from combinatorial paradigm (with continuous values discretization).  
 
5 Final remarks  
 
The question whether our approach can be applied to more complicated algorithms, especially 
ones using linear space and probability machinery, is of great importance. Two examples of 
such algorithms are considered here: DANN - discriminant adaptive nearest neighbor ([10]) 
and LDA – well known Fisher’s linear discriminant analysis. We point out some difficulties 
related to generalization of these algorithms for mix of continuous and nominal data. While 
DANN algorithm seems to be tractable, LDA is more problematic.  
 We begin with reminding the DANN algorithm (see [10]) processing continuous data ݔ ∈ ܴ௣. The DANN metric at a point x0, which is to be classified, is defined by ݔ)ߩ, (଴ݔ ݔ)= − ݔ)∑்(଴ݔ −   :଴) whereݔ
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∑ = ܹିଵଶ ൤ܹିଵଶିܹܤଵଶ + ɛܫ൨ܹିଵଶ = ܹିଵଶ[ܤ∗ + ɛܫሿܹିଵଶ. 
Matrix W is the within-class covariance matrix and B is the between classes covariance matrix. 
They are computed using only 50 nearest neighbors of x0. The above formula first spheres the 
neighborhood data with respect to W and then stretches the neighborhood in the zero-eigen-
value directions of B* (the between-classes matrix for the sphered neighborhood data).  
The ɛ parameter rounds the neighborhood to an ellipsoid. Thus DANN adapts to the shape 
of boundary between classes in the neighborhood of x0. It computes k nearest with respect to 
DANN metric, neighbors of x0 and then assigns x0 to the most frequent class in the computed 
neighborhood.  
 Let T be a training set of records r=(x,n) of continuous and nominal data and let r0 be  
a query record.  Assume that we are working with a kernel K such, that the induced by  
K similarity ρ is the metric (for instance, additive kernel). Let us consider the finite metric space ܺ = (ܶ ∪ ,{଴ݎ}  Assume that there is an embedding e of X into linear space Rq for some .(ߩ
dimension q with Euclidian metric on Rq. Then we compute DANN algorithm in the space 
Rq with the training set e(T) and with the query point e(r0). The within-class covariance and 
between- classes covariance matrices W and B considered in Rq make sense since the original 
distances from the space X are preserved. Unfortunately, there are finite metric spaces X for 
which an embedding e does not exist (for any q, see [3], [4]). The computational geometry 
proposes some remedy: embedding e exists if we allow that e expands or contracts a bit (low-
distortion) original distances between points from X. If the distortion of e is really low, DANN 
algorithm working in Rq should give satisfactory results. There is a beautiful theory about low-
distortion embedding of finite metric spaces into linear spaces. Again, see [3], [4] for formal 
definitions and results.  
 The requirement that a kernel K should induce a metric between data records is the serious 
disadvantage of the proposed version of DANN algorithm. We suspect that kernels needed for 
analyzing complicated mixtures of continuous and nominal data does not satisfy this property.  
 Approach via embedding of finite metric space into linear space Rq does not work well for 
Fisher’s LDA algorithm. For example, even low distortion of embedding e of finite (!) metric 
space can give the following arrangement in R2 of four records: 
 
 
 
 
 
 
Figure 3. Records arrangement 
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No line discriminates classes 1 and 2. What can we do? Let p be the dimension of continuous 
data and A j be the finite domain of j-th nominal attribute and ρ be the metric induced by  
a kernel that we work with. Maybe an embedding with low distortion of the whole metric 
space	(ܴ௣ × ଵܣ × …× ,௦ܣ -into a manifold with a suitable structure would help.  Unfortu ,(ߩ
nately, interesting manifolds have a lot of geometry but no linear space structure. It seems that 
a structure with metric and with defined notions of line, hyperplane, orthogonal projection is 
sufficient for modeling LDA algorithm. We do not dare to call this vision “the approach”. We 
merely argue that maybe it is too early to say that LDA algorithm is definitely not tractable in 
presented context. 
 
6 Conclusion  
 
Our approach works well for algorithms using metric between data in a generic way. For in-
stance k-nn algorithm or our versions of k means clustering and decision tree induction. It is 
plain enough that the approach sketched for DANN algorithm is at the very beginning stage 
of research. A lot of work developing theory giving foundations to our approach should be 
done. For instance further examining kernels properties can lead to discovery of embedding 
metric spaces in question into interesting manifolds. Simultaneously a lot of work with serious 
experiments should be done. It is the task for many researchers we think, and that is why we 
have decided to share our core idea at the current stage.  
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