Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents an overview of developing unconventional geothermal systems, such as Hot Dry Rock Systems (HDR), where is used the heat of dry rock and enhanced system with smali water tributary called Enhanced Geothermal Systems (EGS). These systems provide utilization of geothermal energy in reservoirs (i.a. granites) where conventional methods are not possible to use. Operation HDR/EGS involves the use rock heating through warming medium, which flowing between the production and injection boreholes. In most cases medium introduced artifically by hydraulic fracturing. Currently, most of the projects HDR/EGS is in the implementation phase. Based on gathered materials an analysis of the construction and exploitation geothermal systems. Take into account geological and drilling aspects.
Czasopismo
Rocznik
Tom
Strony
49--63
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
Bibliografia
- [1] Breede K. Dzebisashvili K., Liu X., Falcone G.: A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geothermal Energy, 1(4), 2013, 1-27.
- [2] Dentzer J., Bruel D.: Multiple-well, Multiple-reservoir, Long Term Thermal Modeling at Soultz EGS Site. Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198.
- [3] DiPippo R.: Geothermal Power Plants: principles, applications, case studies and environmental impact, 3r ed. Amsterdam, 2012.
- [4] Editorial: The deep EGS (Enhanced Geothermal System) project at Soultz-sous--Forets (Alsace, France). Geothermics 35, 2006, 473-483. www.sciencedirect.com [access: 23.11.2014]
- [5] Francke H.: Thermo-hydraulic model of the two-phase flow in the brine circuit of a geothermalpower plant. PhD Thesis, 2014.
- [6] Haring M. O.: Geothermische Stromproduktion aus Enhanced Geothermal Systems (EGS). Stand der Technik, 2007. http://www.geothennal.ch [access: 30.12.2014]
- [7] Henninges J. Brandt W., Erbas K., Moeck L, Saadat A., Reinsch T., Zimmermann G.: Downhole Monitoring During Hydraulic Experiments at the In-Situ Geothermal Lab Grofi Schónebeck. Proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30-February 1, 2012 SGP-TR-194.
- [8] Hirschberg S., Wiemer S., Burgherr P: Energy from the Earth. Centre for Technology Assessment, 2015. www.vdf.ethz.ch [access: 15.12.2014]
- [9] Hogarth R., Holi H., McMahon A.: Flow Testing Results from Habanero EGS Project. Proceedings Australian Geothermal Energy Conferences 2013 Brisbane, Australia, 14-15 November 2013.
- [10] Holi H.-G., Barton C: Habanero Field - Structure and State of Stress. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015.
- [11] Kępińska B. et al.: Wytyczne projektowe poprawy chłonności skał zbiornikowych w związku z zatłaczaniem wód termalnych w Polskich zakładach geotermalnych. Wydawnictwo EJB, Kraków 2011.
- [12] Knez D., Śliwa T.: Energetyka geotermalna jako element zrównoważonego rozwoju (Geothermal as an element of sustained development). Wiertnictwo Nafta Gaz, Nr 21/1, Kraków 2004.
- [13] Knez D., Śliwa T.: Technologiczne aspekty szczelinowania złóż gazu łupkowego. Wiertnictwo Nafta Gaz, t. 28, z. 4, 2011.
- [14] Kobayashi H., Kuriyagawa M., Sasaki S.: Hydraulic Fracturing Tests to Make Geothermal Reservoir for Hot Dry Rock Development at Hijiori Field, Japan, Geothermal Resources Council. Transations, vol. 11, October 1987.
- [15] Kolditz O.: Numerical Simulation of Flow and Heat Transfer at The Soultz and Rosemanowes HDR Sites Using a 3-D Deterministic Fracture Network Model Geothermal Resources Council. Transations, vol. 18, October 1994.
- [16] Liszka K.: Podstawy eksploatacji złóż ropy. Skrypty Uczelniane 869, Kraków, 1982.
- [17] Llanos E., Zarrouk S., Hogarth R.: Simulation of the Habanero Enhanced Geothermal System (EGS), Australia. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015.
- [18] McMahon A., Baisch S.: Seismicity Associated with the Stimulation ofthe Enhanced Geothermal System at Habanero, Australia. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015.
- [19] Moeck L, Bloch T., Graf R., Heuberger S., Kuhn R, Naef H., Sonderegger M., Uhlig S., Wolfgramm M.: The St. Gallen Project: Development of Fault Controlled Geo-thermal Systems in Urban Areas. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015.
- [20] Stryczek S., Wiśniowski R., Gonet A., Złotkowski A., Ziają J.: Influence of poly-carboxylate superplasticizers on rheological properties of cement slurries used in drilling technologies. Archives of Mining Sciences, vol. 58, No. 3, 2013.
- [21] Śliwa T.: Sposoby pozyskiwania energii geotermicznej (Methods of geothermal energy exploitation). Konferencja Naukowa, „Rola odnawialnych źródeł energii w strategii zrównoważonego rozwoju kraju" (Conference on „The role of renewable energy sources in the country's sustainable development strategy", proceedings), Łódź, 18-19 września 2000.
- [22] Śliwa T.: Wybrane systemy geotermalne w skałach suchych (Chosen geothermal systems in dry rocks). Konferencja Naukowa „Aktualny stan i perspektywy rozwoju górnictwa w aspekcie ochrony środowiska" (Conference on Current state and development prospects of mining in the aspect of environmental protection, proceedings). Dniepropietrowsk 13-14 maja 1996.
- [23] Śliwa T., Gołaś A., Wołoszyn J., Gonet A.: Numerical model of borehole heat exchanger in ANSYS CFX soft ware (Numeryczny model otworowego wymiennika ciepła w pakiecie ANSYS CFX), Archives of Mining Sciences (Archiwum Górnictwa), 2012.
- [24] Śliwa T., Gonet A., Grasela A.: The wells of the Lipinki oil field in the aspect of borehole heat exchangers retrained. Acta Montanistica Slovaca, R. 11, The Faculty of Mining, Ecology, Process Control and Geotechnologies (F BERG) [etc.]. Kosice: F BERG, 2006, 178-182
- [25] Śliwa T., Szura M., Gonet A., Sapinska-Śliwa A.: Hydraulic Fracturing in Systems of Geothermal Utilization (EGS, HDR). AGH Drilling, Oil, Gas, vol. 29, No. 3, 2012.
- [26] Śliwa T., Wiglusz T.: Techniczne problemy udostępniania i eksploatacji energii geotermalnej (Technical problems of opening out and geothermal energy exploitation). Materiały konferencyjne, Konferencja Naukowo-Techniczna IX Ogólnopolskie Forum Odnawialnych Źródeł Energii, Zakopane-Kościelisko, 2003.
- [27] Tenma N., Yamaguchi T., Tezuka K., Karasawa H., Zyvoloski G.: Estimation of the Productivity of the Deep Reservoir at the Hijori HDR Test Site Using FEHM. Geothermal Resources Council Transactions, vol. 24, September 24-27, 2000.
- [28] Tester J.W., Anderson B.J., Batchelor A.S., Blackwell D.D., DiPippo R., Drake E.M., Garnish J., Livesay B., Moore M.C., Nichols K., Petty S., Toksóz M.N., Veatch R.W. Jr.: The Future of Geothermal Energy - Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology. Idaho Falls: Idaho National Laboratory, 2006.
- [29] Urpi L., Zimmennann G., Blócher G., Kwiatek G.: Microseismicity at Grofi Schóne-beck. A Case Review. Proceedings, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31-Febraary 2, 2011 SGP-TR-191.
- [30] Wójcicki A., Sowiżdżał A., Bujakowski W., Szewczyk J.: Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (Hot Dry Rocks) w Polsce. Warszawa/Kraków, 2013.
- [31] Yamamoto T., Eguchi Y., Kitano K., Brown D., Duchane D., Fehler M., Ohnishi H.: Simulating Fenton Hill HDR Test Results Using the GEOTH3D Code. Proceedings, Twenty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26-28, 1998 SGP-TR-I 58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5847ccec-51f4-4be4-8b8a-e448bf31bbdf