Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
While considerable progress has already been made in the field of additive manufacturing further development is needed. There is a huge demand in the global market for the production of high-quality components with complex geometries. The post-production surfaces after fabrication by AM technologies require finishing treatment due to the presence of defects on the surface layer. Therefore, a series of studies have been carried out to analyze the effect of shot-peening treatment on DMLS-manufactured titanium specimens. Shot peening process were carried out using three different working media: CrNi steel shot, crushed nutshells, ceramic with working pressure of 0.3 MPa. The study included examination of surface roughness, Vickers hardness, phase composition and SEM analysis of the obtained surfaces. Analysis of the surface roughness showed a decrease in roughness using CrNi steel shot and ceramic balls. The use of nutshells resulted in an increase in roughness due to the sharp shape of the grains used. An increase in the surface hardness was observed for all modified surfaces. The least strengthening effect was obtained with nuthsell shots. XRD phase analysis indicates that a two-phase structure of α'+β was identified in the post-production condition. There has been an increase in the share of the β phase for all treated samples. The greatest increase of the β phase was obtained for steel shots and ceramic balls. Changes in the percentages of the phases in the treated samples are the results of the induced phase transformations. The shot peening process also induces plastic deformation on the surface and forms a nanocrystalline layer, as demonstrated by SEM analysis. The overall results after the shot peening treatment indicates a favorable effect on the properties and the state of the surface layer of the Ti-6Al-4V titanium alloy for ceramic and steel shots.
Wydawca
Rocznik
Tom
Strony
25--35
Opis fizyczny
Bibliogr. 36 poz., fig., tab.
Twórcy
autor
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, 20-618 Lublin, Poland
autor
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, 20-618 Lublin, Poland
autor
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36D, 20-618 Lublin, Poland
Bibliografia
- 1. Titanium: Physical Metallurgy Processing and Applications; Froes, F.H., Ed.; ASM International: Materials Park, Ohio, 2015.
- 2. Cui, C.; Hu, B.; Zhao, L.; Liu, S. Titanium alloy production technology, market prospects and industry development. Materials & Design 2011, 32, 1684–1691, doi:10.1016/j.matdes.2010.09.011.
- 3. El Khalloufi, M.; Drevelle, O.; Soucy, G. Titanium: An overview of resources and production methods. Minerals 2021, 11, 1425, doi:10.3390/min11121425.
- 4. Fang, Z.Z.; Lefler, H.D.; Froes, F.H.; Zhang, Y. Introduction to the development of processes for primary Ti metal production. In Extractive Metallurgy of Titanium; Elsevier, 2020; 1–10.
- 5. Fadeel, B. Handbook of Safety Assessment of Nanomaterials: From Toxicological Testing to Personalized Medicine; Pan Stanford series on biomedical nanotechnology; Pan Stanford publ: Singapore, 2015.
- 6. Harun, W.S.W.; Manam, N.S.; Kamariah, M.S.I.N.; Sharif, S.; Zulkifly, A.H.; Ahmad, I.; Miura, H. A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications. Powder Technology 2018; 331: 74–97, doi:10.1016/j.powtec.2018.03.010.
- 7. Winiarski, G.; Gontarz, A.; Pater, Z. A new process for the forming of a triangular flange in hollow shafts from Ti6Al4V alloy. Archives of Civil and Mechanical Engineering 2015; 15: 911–916, doi:10.1016/j.acme.2015.01.001.
- 8. Huang, R.; Riddle, M.; Graziano, D.; Warren, J.; Das, S.; Nimbalkar, S.; Cresko, J.; Masanet, E. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production 2016; 135: 1559–1570, doi:10.1016/j.jclepro.2015.04.109.
- 9. Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Materials & Design 2019, 164, 107552, doi:10.1016/j.matdes.2018.107552.
- 10. Żebrowski, R.; Walczak, M. Effect of the shot peening on surface properties and tribological performance of Ti-6Al-4V alloy produced by means of DMLS technology. Archives of Metallurgy and Materials 2019, doi:10.24425/amm.2019.126263.
- 11. Nguyen, H.D.; Pramanik, A.; Basak, A.K.; Dong, Y.; Prakash, C.; Debnath, S.; Shankar, S.; Jawahir, I.S.; Dixit, S.; Buddhi, D. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties. Journal of Materials Research and Technology 2022; 18: 4641–4661, doi:10.1016/j.jmrt.2022.04.055.
- 12. Okuniewski, W.; Walczak, M.; Szala, M. Effects of shot peening and electropolishing treatment on the properties of additively and conventionally manufactured Ti6Al4V alloy: A review. Materials 2024; 17: 934, doi:10.3390/ma17040934.
- 13. Macek, W.; Martins, R.F.; Branco, R.; Marciniak, Z.; Szala, M.; Wroński, S. Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing. Int J Fract 2022; 235: 79–98, doi:10.1007/s10704-022-00615-5.
- 14. Walczak, M.; Pasierbiewicz, K.; Szala, M. Adhesion and mechanical properties of TiAlN and AlTiN magnetron sputtered coatings deposited on the DMSL titanium alloy substrate. Acta Phys. Pol. A 2019; 136: 294–298, doi:10.12693/APhysPolA.136.294.
- 15. Dhakal, B.; Swaroop, S. Review: Laser shock peening as post welding treatment technique. Journal of Manufacturing Processes 2018; 32: 721–733, doi:10.1016/j.jmapro.2018.04.006.
- 16. Soyama, H.; Korsunsky, A.M. A critical comparative review of cavitation peening and other surface peening methods. Journal of Materials Processing Technology 2022; 305: 117586, doi:10.1016/j.jmatprotec.2022.117586.
- 17. Skoczylas, A.; Matuszak, J.; Ciecieląg, K.; Zaleski, K. Geometric structure of the surface of impulse shot-peened titanium alloy Ti6Al4V. In Proceedings of the 2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace); IEEE: Lublin, Poland, June 3, 2024; 525–530.
- 18. Avcu, Y.Y.; Iakovakis, E.; Guney, M.; Çalım, E.; Özkılınç, A.; Abakay, E.; Sönmez, F.; Koç, F.G.; Yamanoğlu, R.; Cengiz, A.; et al. Surface and tribological properties of powder metallurgical Cp-Ti titanium alloy modified by shot peening. Coatings 2023; 13: 89, doi:10.3390/coatings13010089.
- 19. Zhang, Q.; Duan, B.; Zhang, Z.; Wang, J.; Si, C. Effect of ultrasonic shot peening on microstructure evolution and corrosion resistance of selective laser melted Ti–6Al–4V alloy. Journal of Materials Research and Technology 2021; 11: 1090–1099, doi:10.1016/j.jmrt.2021.01.091.
- 20. Luo, X.; Dang, N.; Wang, X. The effect of laser shock peening, shot peening and their combination on the microstructure and fatigue properties of Ti-6Al-4V titanium alloy. International Journal of Fatigue 2021; 153: 106465, doi:10.1016/j.ijfatigue.2021.106465.
- 21. Aguado-Montero, S.; Navarro, C.; Vázquez, J.; Lasagni, F.; Slawik, S.; Domínguez, J. Fatigue behaviour of PBF additive manufactured Ti6Al4V alloy after shot and laser peening. International Journal of Fatigue 2022; 154: 106536, doi:10.1016/j.ijfatigue.2021.106536.
- 22. Soyama, H.; Kuji, C. Improving effects of cavitation peening, using a pulsed laser or a cavitating jet, and shot peening on the fatigue properties of additively manufactured titanium alloy Ti6Al4V. Surface and Coatings Technology 2022; 451: 129047, doi:10.1016/j.surfcoat.2022.129047.
- 23. Kumar, S.; Chattopadhyay, K.; Singh, V. Effect of ultrasonic shot peening on LCF behavior of the Ti–6Al–4V alloy. Journal of Alloys and Compounds 2017; 724: 187–197, doi:10.1016/j.jallcom.2017.07.014.
- 24. Kahlin, M.; Ansell, H.; Basu, D.; Kerwin, A.; Newton, L.; Smith, B.; Moverare, J.J. Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing. International Journal of Fatigue 2020; 134: 105497, doi:10.1016/j.ijfatigue.2020.105497.
- 25. Wu, B.; Huang, J.; Yang, G.; Ren, Y.; Zhou, S.; An, D. Effects of ultrasonic shot peening on fatigue behavior of TA15 titanium alloy fabricated by Laser Melting Deposition. Surface and Coatings Technology 2022; 446: 128769, doi:10.1016/j.surfcoat.2022.128769.
- 26. Macek, W.; Branco, R.; De Jesus, J.; Costa, J.D.; Zhu, S.-P.; Masoudi Nejad, R.; Gryguć, A. Strain energy density and entire fracture surface parameters relationship for LCF life prediction of additively manufactured 18Ni300 steel. International Journal of Damage Mechanics 2024; 33: 725–747, doi:10.1177/10567895241245879.
- 27. Ahmed, A.A.; Mhaede, M.; Wollmann, M.; Wagner, L. Effect of micro shot peening on the mechanical properties and corrosion behavior of two microstructure Ti–6Al–4V alloy. Applied Surface Science 2016; 363: 50–58, doi:10.1016/j.apsusc.2015.12.019.
- 28. Jelliti, S.; Richard, C.; Retraint, D.; Roland, T.; Chemkhi, M.; Demangel, C. Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surface and Coatings Technology 2013; 224: 82–87, doi:10.1016/j.surfcoat.2013.02.052.
- 29. Ganesh, B.K.C.; Sha, W.; Ramanaiah, N.; Krishnaiah, A. Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys. Materials & Design (1980–2015) 2014; 56: 480–486, doi:10.1016/j.matdes.2013.11.052.
- 30. Kameyama, Y.; Komotori, J. Effect of micro ploughing during fine particle peening process on the microstructure of metallic materials. Journal of Materials Processing Technology 2009; 209: 6146–6155, doi:10.1016/j.jmatprotec.2009.08.010.
- 31. Żebrowski, R.; Walczak, M.; Drozd, K.; Jarosz, M. Changes of cytotoxicity of Ti-6Al-4V alloy made by DMLS technology as effect of the shot peening. Ann Agric Environ Med. 2020; 27: 706–712, doi:10.26444/aaem/116386.
- 32. Walczak, M.; Świetlicki, A.; Szala, M.; Turek, M.; Chocyk, D. Shot peening effect on sliding wear in 0.9% NaCl of additively manufactured 17-4PH steel. Materials 2024; 17: 1383, doi:10.3390/ma17061383.
- 33. Skoczylas, A. Vibratory shot peening of elements cut with abrasive water jet. Adv. Sci. Technol. Res. J. 2022; 16: 39–49, doi:10.12913/22998624/146272.
- 34. Walczak, M.; Szala, M. Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing. Archiv. Civ. Mech. Eng 2021, 21, 157, doi:10.1007/s43452-021-00306-3.
- 35. Walczak, M.; Szala, M.; Okuniewski, W. Assessment of corrosion resistance and hardness of shot peened X5CrNi18-10 steel. Materials 2022; 15: 9000, doi:10.3390/ma15249000.
- 36. Żebrowski, R.; Walczak, M.; Klepka, T.; Pasierbiewicz, K. Effect of the shot peening on surface properties of Ti-6Al-4V alloy produced by means of DMLS technology. Eksploatacja i Niezawodność – Maintenance and Reliability 2019; 21: 46–53, doi:10.17531/ein.2019.1.6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-584786ea-d038-4500-a5b6-67c61bc35e02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.