PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel hybrid iterative method for applied mathematical models with time-efficiency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-linear phenomena appear in many fields of engineering and science. Research on numerical methods is continually extending with the improvement of the latest computing tools. In today’s computational field, one requires maximum achievement in a minimum amount of time. Therefore, there is a need to modify the Newton-type method to achieve higher-order convergence to solve non-linear equations. While the modified methods are expected to be higher-order convergent, the minor computational information and the maximum time efficiency are also important factors. We propose a three-step hybrid iterative method having a non-linear nature. Per iteration, the method requires three function evaluations and three first-order derivatives. The method is theoretically proven to be tenth-order convergent. The mathematical results of the proposed strategy to solve models from fluid dynamics, electric field, and real gases demonstrated better performance. In light of error analysis, computational productivity, and CPU times, the proposed method’s performance is compared to the famous Newton and a recently proposed tenth-order method.
Rocznik
Strony
19--29
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
  • Department of Basic Sciences and Related Studies, Mehran University of Engineering & Technology Jamshoro, Pakistan
  • Department of Basic Sciences and Related Studies, Mehran University of Engineering & Technology Jamshoro, Pakistan
  • Department of Basic Sciences and Related Studies, Mehran University of Engineering & Technology Jamshoro, Pakistan
Bibliografia
  • [1] Abro, H.A., & Shaikh, M.M. (2019). A new time-efficient and convergent nonlinear solver. Applied Mathematics and Computation, 355, 516-536.
  • [2] Ortega, J.M. (1990). Numerical analysis: a second course. Society for Industrial and Applied Mathematics.
  • [3] Kung, H.T., & Traub, J.F. (1974). Optimal order of one-point and multipoint iteration. Journal of the ACM (JACM), 21(4), 643-651.
  • [4] Shah, F.A., Noor, M.A., & Waseem, M. (2016). Some second-derivative-free sixth-order convergent iterative m ethods for non-linear equations. Maejo International Journal of Science and Technology, 10(1), 79.
  • [5] Rafiullah, M. (2011). A fifth-order iterative method for solving nonlinear equations. Numerical Analysis and Applications, 4(3), 239-243.
  • [6] Noor, M.A. (2007). New classes of iterative methods for nonlinear equations. Applied Mathematics and Computation, 191(1), 128-131.
  • [7] Noor, M.A., & Waseem, M. (2009). Some iterative methods for solving a system of nonlinear equations. Computers & Mathematics with Applications, 57(1), 101-106.
  • [8] Fang, L., Sun, L., & He, G. (2008). An efficient Newton-type method with fifth-order convergence for solving nonlinear equations. Computational & Applied Mathematics, 27, 269-274.
  • [9] Jaiswal, J.P., & Choubey, N. (2013). A New Efficient Optimal Eighth-Order Iterative Method for Solving Nonlinear Equations. arXiv preprint arXiv:1304.4702.
  • [10] Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454.
  • [11] Cordero, A., Torregrosa, J.R., & Triguero-Navarro, P. (2021). A general optimal iterative scheme with arbitrary order of convergence. Symmetry, 13(5), 884.
  • [12] Waseem, M., Noor, M.A., & Noor, K.I. (2016). Efficient method for solving a system of nonlinear equations. Applied Mathematics and Computation, 275, 134-146.
  • [13] Tassaddiq, A., Qureshi, S., Soomro, A., Hincal, E., Baleanu, D., & Shaikh, A.A. (2021). A new three-step root-finding numerical method and its fractal global behavior. Fractal and Fractional, 5(4), 204.
  • [14] Srivastava, A. (2016). An iterative method with fifteenth-order convergence to solve systems of nonlinear equations. Computational Mathematics and Modeling, 27(4), 497-510.
  • [15] Noor, M.A., & Noor, K.I. (2007). Fifth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 188(1), 406-410.
  • [16] Aizenofe, A.A., & Olaoluwa, O.E. (2020). A four-step collocation procedure by means of perturbation term with application to third-order ordinary differential equation. International Journal of Computer Applications, 175, 24, 25-36.
  • [17] Ogunware, B.G., & Omole, E.O. (2020). A class of irrational linear multistep block method for the direct numerical solution of third order ordinary differential equations. Turkish Journal of Analysis and Number Theory, 8(2), 21-27.
  • [18] Juraev, D.A. (2021). Solution of the ill-posed cauchy problem for matrix factorizations of the helmholtz equation on the plane. Global and Stochastic Analysis, 8(3), 1-17.
  • [19] Juraev, D.A. (2020). The solution of the ill-posed Cauchy problem for matrix factorizations of the Helmholtz equation. Advanced Mathematical Models & Applications, 5(2), 205-221.
  • [20] Shokri, A., Mehdizadeh Khalsaraei, M., & Molayi, M. (2022). Nonstandard dynamically consistent numerical methods for MSEIR model. Journal of Applied and Computational Mechanics, 8(1), 196-205.
  • [21] Baleanu, D., Khalsaraei, M.M., Shokri, A., & Kaveh, K. (2022). On the boundedness stepsizes-coefficients of A-BDF methods. AIMS Mathematics, 7(2), 1562-1579.
  • [22] Khalsaraei, M., Rashidi, M.M., Shokri, A., Ramos, H., & Khakzad, P. (2022). A nonstandard finite difference method for a generalized black-scholes equation. Symmetry, 14(1), 141.
  • [23] Bahmani, E., & Shokri, A. (2022). Numerical study of the unsteady 2D coupled magnetohydrodynamic equations on regular/irregular pipe using direct meshless local Petrov-Galerkin method. Applied Mathematics and Computation, 417, 126769.
  • [24] Noor, M.A. (2010). Some iterative methods for solving nonlinear equations using homotopy perturbation method. International Journal of Computer Mathematics, 87(1), 141-149.
  • [25] Golbabai, A., & Javidi, M. (2007). A third-order Newton type method for nonlinear equations based on modified homotopy perturbation method. Applied Mathematics and Computation, 191(1), 199-205.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5846d5c3-5a26-48e9-a9bb-689bf413f26f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.