PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monthly dynamics of carbon dioxide exchange across the sea surface of the Arctic Ocean in response to changes in gas transfer velocity and partial pressure of CO2 in 2010

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Arctic Ocean (AO) is an important basin for global oceanic carbon dioxide (CO2) uptake, but the mechanisms controlling air–sea gas fluxes are not fully understood, especially over short and long timescales. The oceanic sink of CO2 is an important part of the global carbon budget. Previous studies have shown that in the AO differences in the partial pressure of CO2 (Δp CO2) and gas transfer velocity (k) both contribute significantly to interannual air–sea CO2 flux variability, but that k is unimportant for multidecadal variability. This study combined Earth Observation (EO) data collected in 2010 with the in situ p CO2 dataset from Takahashi et al. (2009) (T09) using a recently developed software toolbox called FluxEngine to determine the importance of k and Δp CO2 on CO2 budgets in two regions of the AO – the Greenland Sea (GS) and the Barents Sea (BS) with their continental margins. Results from the study indicate that the variability in wind speed and, hence, the gas transfer velocity, generally play a major role in determining the temporal variability of CO2 uptake, while variability in monthly Δp CO2 plays a major role spatially, with some exceptions.
Czasopismo
Rocznik
Strony
445--459
Opis fizyczny
Bibliogr. 60 poz., mapy, tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Arrigo, K. R., van Dijken, G. L., Pabi, S., 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35 (19), L19603, 6 pp., http://dx.doi.org/10.1029/2008GL035028.
  • [2] Arrigo, K. R., Pabi, S., van Dijken, G. L., Maslowski, W., 2010. Air-sea flux of CO2 in the Arctic Ocean, 1998-2003. J. Geophys. Res. Biogeosci. 115 (G4), 15 pp., http://dx.doi.org/10.1029/2009JG001224.
  • [3] Ashton, I. G., Shutler, J. D., Land, P. E., Woolf, D. K., Quartly, G. D., 2016. A sensitivity analysis of the impact of rain on regional and global sea-air fluxes of CO2. PLOS ONE 11 (9), e0161105, 18 pp., http://dx.doi.org/10.1371/journal.pone.0161105.
  • [4] Bates, N. R., 2012. Multi-decadal uptake of carbon dioxide into subtropical mode water of the North Atlantic Ocean. Biogeoscience 9 (7), 2649-2659, http://dx.doi.org/10.5194/bg-9-2649-2012.
  • [5] Bates, N. R., Mathis, J. T., 2009. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6 (11), 2433-2459, http://dx.doi.org/10.5194/bg-6-2433-2009.
  • [6] Boutin, J., Etcheto, J., Merlivat, L., Rangama, Y., 2002. Influence of gas exchange coefficient parameterization on seasonal and regional variability of CO2 air-sea fluxes. Geophys. Res. Lett. 29 (8), 23-1—23-4, http://dx.doi.org/10.1029/2001GL013872.
  • [7] Cai, W.-J., Dai, M., Wang, Y., 2006. Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys. Res. Lett. 33 (12), L12603, http://dx.doi.org/10.1029/2006GL026219.
  • [8] Couldrey, M. P., Oliver, K. I. C., Yool, A., Halloran, P. R., 2016. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability? Global Biogeochem. Cycl. 30 (5), 787-802, http://dx.doi.org/10.1002/2015GB005267.
  • [9] Dai, A., Qian, T., Trenberth, K. E., Millimian, J. D., 2009. Changes in continental freshwater discharge from 1948 to 2004. J. Climate 22 (10), 2773-2792, http://dx.doi.org/10.1175/2008JCLI2592.1.
  • [10] Doney, S. C., Lima, I., Feely, R. A., Glover, D. M., Lindsey, K., Mahowald, N., Moore, J. K., Wanninkhof, R., 2009. Mechanisms governing interannual variability in upper-ocean inorganic carbo system and air-sea CO2 fluxes: physical climate and atmospheric dust. Deep-Sea Res. Pt. II 56 (8-10), 640-655, http://dx.doi.org/10.1016/j.dsr2.2008.12.006.
  • [11] Else, B. G. T., Papakyriakou, T. N., Galley, R. J., Drennan, W. M., Miller, L. A., Thomas, H., 2011. Wintertime CO2 fluxes in an Arctic polynya using eddy covariance: evidence for enhanced air-sea gas transfer during ice formation. J. Geophys. Res. 116 (C9), C00G03, 15 pp., http://dx.doi.org/10.1029/2010JC006760.
  • [12] Garbe, C. S., Rutgersson, A., Boutin, J., de Leeuw, G., Delille, B., Fairall, C. W., Gruber, N., Hare, J., Ho, D. T., Johnson, M. T., Nightingale, P. D., Pettersson, H., Piskozub, J., Sahlee, E., Tsai, W., Ward, B., Woolf, D. K., Zappa, C. J., 2014. Transfer across the air-sea interface. In: Liss, P.S., Johnson, M. T. (Eds.), Ocean-Atmosphere Interactions of Gases and Particles. Springer-Earth Sys. Sciences, Berlin, Heidelberg, 55-111.
  • [13] Goddijn-Murphy, L., Woolf, D. K., Land, P. E., Shutler, J. D., Donlon, C., 2015. The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies. Ocean Sci. 11 (4), 519-541, http://dx.doi.org/10.5194/os-11-519-2015.
  • [14] Goddijn-Murphy, L., Woolf, D. K., Callaghan, A. H., Nightingale, P. D., Shutler, J. D., 2016. A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity. J. Geophys. Res. 121 (1), 818-835, http://dx.doi.org/10.1002/2015JC011096.
  • [15] Gruber, N., 2009. Carbon cycle: fickle trends in the ocean. Nature 458 (7235), 155-156, http://dx.doi.org/10.1038/458155a.
  • [16] Gruber, N., Keeling, C. D., Bates, N. P., 2003. Interannual variability in the North Atlantic Ocean carbon sink. Science 298 (5602), 2374-2378, http://dx.doi.org/10.1126/science.1077077.
  • [17] Gurgul, H., 2002. Białe Pustynie — Arktyka. Wyd. Kurpisz. Poznań, 4-30.
  • [18] Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., Hill, P., 2006. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys. Res. Lett. 33 (16), L16611, http://dx.doi.org/10.1029/2006GL026817.
  • [19] IPCC, 2013. Carbon and other biogeochemical cycles. In: Stocker, T. F., Qun, D., Plattner, G.-K., Tignor, W., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, 470-516.
  • [20] Kondo, F., Tsukamoto, O., 2012. Comparative CO2 flux measurements by eddy covariance technique using open- and closed-path gas analysers over the Equatorial Pacific Ocean. Tellus B 64 (17511), 1-12, http://dx.doi.org/10.3402/tellusb.v64i0.17511.
  • [21] Kulinski, K., She, J., Pempkowiak, J., 2011. Short and medium term dynamics of the carbon exchange between the Baltic Sea and the North Sea. Cont. Shelf Res. 31 (15), 1611-1619, http://dx.doi.org/10.1016/j.csr.2011.07.001.
  • [22] Land, P. E., Shutler, J. D., Cowling, R. D., Woolf, D. K., Walker, P., Findlay, H. S., Upstill-Goddard, R. C., Donlon, C. J., 2013. Climate change impacts on sea-air fluxes of CO2 in three Arctic seas: a sensitivity study using Earth observation. Biogeosciences 10 (12), 8109-8128, http://dx.doi.org/10.5194/bg-10-8109-2013.
  • [23] Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., 2014. Recent variability of the global ocean carbon sink. Global Biogeochem. Cycl. 28 (9), 927-949, http://dx.doi.org/10.1002/2014GB004853.
  • [24] Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., Zeng, N., 2013. The global carbon budget 1959-2011. Earth Syst. Sci. Data 5, 165-185, http://dx.doi.org/10.5194/essd-5-165-2013.
  • [25] Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Kelling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Goldewijk, K. K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoko, S. I., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Hanqin, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Zaehle, S., 2016. Global Carbon budget 2016. Earth Syst. Sci. Data 8 (2), 605-649, http://dx.doi.org/10.5194/essd-8-605-2016.
  • [26] Le Quéré, C., Orr, J. C., Monfray, P., Aumont, O., Madec, G., 2000. Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochem. Cycl. 14 (4), 1247-1265, http://dx.doi.org/10.1029/1999GB900049.
  • [27] Le Quéré, C., Takahashi, T., Buitenhuis, E. T., Rödenbeck, C., Sutherland, S. C., 2010. Impact of climate change and variability on the global oceanic sink of CO2. Global Biogeochem. Cycl. 24 (4), GB4007, http://dx.doi.org/10.1029/2009GB003599.
  • [28] Lefèvre, N., Watson, A. J., Olsen, A., Rios, A. F., Perez, F. F., Johannessen, T., 2004. A decrease in the sink for atmospheric CO2 in the North Atlantic. Geophys. Res. Lett. 31 (7), L07306, http://dx.doi.org/10.1029/2003GL018957.
  • [29] Lefèvre, N., Watson, A. J., Watson, A. R., 2005. A comparison of multiple regression an neutral network techniques for mapping in situ pCO2 data. Tellus B 57 (5), 375-384, http://dx.doi.org/10.1111/j.1600-0889.2005.00164.x.
  • [30] MacGilchrist, G. A., Naveira Garabato, A. C., Tsubouchi, T., Bacon, S., Torres-Valdés, S., Azetsu-Scott, K., 2014. The Arctic Ocean carbon sink. Deep-Sea Res. Pt. I 86, 39-55, http://dx.doi.org/10.1016/j.dsr.2014.01.002.
  • [31] McGillis, W. R., Edson, J. B., Hare, J. E., Fairall, C. W., 2001. Direct covariance air-sea CO2 fluxes. J. Geophys. Res. 106 (C8), 16729-16745, http://dx.doi.org/10.1029/2000JC000506.
  • [32] Merchant, C. J., Embury, O., Rayner, N. A., Berry, D. I., Corlett, G. K., Lean, K., Veal, K. L., Kent, E. C., Llewellyn-Jones, D. T., Remedios, J. J., Saunders, R., 2012. A 20 year independent record of sea surface temperature for climate from Along-Track Scanning Radiometers. J. Geophys. Res. 117 (C12), C12013, 18 pp., http://dx.doi.org/10.1029/2012JC008400.
  • [33] Minnett, P., Kaiser-Weiss, A., 2012. Discussion Document: Nearsurface Oceanic Temperature Gradients, https://www.ghrsst.org/wp-content/uploads/2016/10/SSTDefinitionsDiscussion.pdf.
  • [34] Nakaoko, S. I., Aoki, A., Nakazawa, T., Hashida, G., Morimoto, S., Yamanouchi, T., Yoshikawa-Inoue, H., 2006. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in Greenland Sea and Barents Sea. Tellus B 58 (2), 148-616, http://dx.doi.org/10.1111/j.1600-0889.2006.00178.
  • [35] Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., Upstill-Goddard, R. C., 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycl. 14 (1), 373-387, http://dx.doi.org/10.1029/1999GB900091.
  • [36] Olsen, A., Bellerby, R. G. J., Johannessen, T., Omar, A. M., Skjelvan, I., 2003. Interannual variability in the wintertime air-sea flux of carbon dioxide in the northern North Atlantic 1981-2001. Deep-Sea Res. Pt. I 50 (11), 1323-1338, http://dx.doi.org/10.1016/S0967-0637(03)00144-4.
  • [37] Omar, A. M., Johannessen, T., Kaltin, S., Olsen, A., 2003. Anthropogenic increase of oceanic pCO2 in the Barents Sea surface water. J. Geophys. Res. 108 (C12), 18-1—18-8, http://dx.doi.org/10.1029/2002JC001628.
  • [38] Omar, A. M., Johannessen, T., Olsen, A., Kaltin, S., Rey, F., 2007. Seasonal and interannual variability of the air-sea CO2 flux in the Atlantic sector of the Barents Sea. Mar. Chem. 104 (3), 203-213, http://dx.doi.org/10.1016/j.marchem.2006.11.002.
  • [39] Piechura, J., Walczowski, W., 2009. Warming of the West Spitsbergen Current and sea ice north of Svalbard. Oceanologia 51 (2), 147-164, http://dx.doi.org/10.5697/oc.51-2.147.
  • [40] Polyakov, I. V., Alekseev, G. V., Timokhov, L. A., Bhatt, U. S., Colony, R. L., Simmons, H. L., Walsh, D., Walsh, J. E., Zakharov, V. F., 2004. Variability of the Intermediate Atlantic Water of the Arctic Ocean over the last 100 years. J. Climate 17 (23), 4485-4497, http://dx.doi.org/10.1175/JCLI-3224.1.
  • [41] Repina, I. A., Semiletov, I. P., Smirnov, A.S., 2007. Eddy correlation measurements of air-sea CO2 fluxes in the Laptev Sea in the summer period. Doklady Earth Sci. 413 (2), 452-456, http://dx.doi.org/10.1134/S1028334X07030300.
  • [42] Rödenbeck, C., 2005. Estimating CO2 Sources and Sinks From Atmospheric Mixing Ratio Measurements Using a Global Inversion of Atmospheric Transport. Max-Planck Institute for Biogeochemistry, Jena, 53 pp.
  • [43] Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., Ríos, A. F., 2004. The oceanic sink for anthropogenic CO2. Science 305 (5682), 367-371, http://dx.doi.org/10.1126/science.1097403.
  • [44] Schuster, U., McKinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay, A. R., González-Dávila, M., Gruber, N., Jones, S., Krijnen, J., Landschützer, P., Lefèvre, N., Manizza, M., Mathis, J., Metzl, N., Olsen, A., Ríos, A. F., Rödenbeck, C., Santana-Casiano, J. M., Takahashi, T., Wanninkhof, R., Watson, A. J., 2013. An assessment of the Atlantic and Arctic sea-air CO2 fluxes, 1990-2009. Biogeosciences 10 (1), 607-627, http://dx.doi.org/10.5194/bg-10-607-2013.
  • [45] Sejr, M. K., Krause-Jensen, D., Rysgaard, R., Sørensen, L. L., Christensen, P. B., Glud, R. N., 2011. Air-sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice. Tellus B 63 (5), 815-822.
  • [46] Semiletov, I. P., Makshtas, A., Akasofu, S.-I., Andreas, L. A., 2004. Atmospheric CO2 balance: the role of the Arctic sea ice. Geophys. Res. Lett. 31 (5), L05121, 4 pp., http://dx.doi.org/10.1029/2003GL017996.
  • [47] Shutler, J. D., Piolle, J.-F., Land, P. E., Woolf, D. K., Goddijn-Murphy, L., Paul, F., Girard-Ardhuin, F., Chapron, B., Donlon, C. J., 2016. FluxEngine: a flexible processing system for calculating atmosphere-ocean carbon dioxide gas fluxes and climatologies. J. Atmos. Ocean. Technol. 33 (4), 741-756, http://dx.doi.org/10.1175/JTECH-D-14-00204.1.
  • [48] StatSoft Inc., 2013. Electronic Statistical Textbook. StatSoft. WEB, Tulsa, OK, http://www.statsoft.com/textbook/.
  • [49] Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., Nojiri, Y., 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. Pt. II 49 (9-10), 1601-1622, http://dx.doi.org/10.1016/S0967-0645(02)00003-6.
  • [50] Takahashi, T., Sutherland, S. C., Kozyr, A., 2008. Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed during 1968-2006 (Version 1.0). ORNL/CDIAC-152, NDP-088, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. U.S. Department of Energy, Oak Ridge, TN, p. 37831.
  • [51] Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H. Y., Ishii, M., Midorikawa, T., Nojiri, Y., Köertzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., de Baar, H. J. W., 2009. Climatological mean and decadal change in surface ocean pCO2 and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II 56 (8-10), 554-577, http://dx.doi.org/10.1016/j.dsr2.2008.12.009.
  • [52] Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., Moulin, C., Bakker, D. C. E., González-Dávila, M., Johannessen, T., Körtzinger, A., Lüger, H., Olsen, A., Omar, A., Padin, X. A., Ríos, A. F., Steinhoff, T., Santana-Casiano, M., Wallace, D. W. R., Wanninkhof, R., 2009. Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network. Biogeosciences 6 (10), 1405-1421, http://dx.doi.org/10.5194/bg-6-1405-2009.
  • [53] Thomas, H., Bozec, Y., Elkalay, K., de Baar, H. J. W., 2004. Enhanced open ocean storage of CO2 from Shelf Sea pumping. Science 304 (5673), 1005-1008, http://dx.doi.org/10.1126/science.1095491.
  • [54] Wanninkhof, R., McGillis, W. R., 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett. 26 (13), 1889-1892.
  • [55] Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. S., McGillis, W. R., 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Ann. Rev. Mar. Sci. 1, 213-244, http://dx.doi.org/10.1146/annurev.marine.010908.163742.
  • [56] Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H., Khatiwala, S., 2013. Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10 (3), 1983-2000, http://dx.doi.org/10.5194/bg-10-1983-2013.
  • [57] Weiss, R. F., Van Woy, F. A., Salameh, P. K., 1992. Surface Water and Atmospheric Gas Chromatography: Results From Expeditions Between 1977 and 1990. Scripps Institute of Oceanography. Carbon Dioxide Information Analysis, Centre Oak Ridge National Laboratory, NDP-044.
  • [58] Woolf, D. K., Goddijn-Murphy, L. M., Prytherch, J., Yelland, M. J., Nightingale, P. D., Shutler, J. D., Piolle, J.-F., Hanafin, J., Chapron, B., 2013. Appropriate treatment of uncertainty and ambiguity; a flexible system for climatological calculations in response to an on-going debate on the transfer velocity. Proc. 'ESA Living Planet Symposium 2013', Edinburgh, 9-13 September 2013, 8 pp., http://www.oceanflux-ghg.org/content/download/75643/973537/file/Woolf_etal_LivingPlanet_2013.pdf.
  • [59] Wrobel, I., Piskozub, J., 2016. Effect of gas-transfer-velocity parameterizations choice on air-sea CO2 fluxes in the North Atlantic and the European Arctic. Ocean Sci. 12 (5), 1091-1103, http://dx.doi.org/10.5194/os-12-1091-2016.
  • [60] Yasunaka, S., Murata, A., Watanabe, E., Chierici, M., Fransson, A., van Heuven, S., Hoppema, M., Ishii, M., Johannessen, T., Kosugi, N., Lauvset, S. V., Mathis, J. T., Nishino, S., Omar, A. M., Olsen, A., Sasano, D., Takahashi, T., Wanninkhof, R., 2016. Mapping of the air-sea CO2 flux in the Arctic Ocean and its adjacent seas: basin-wide distribution and seasonal to interannual variability. Polar Sci. 10 (3), 323-334, http://dx.doi.org/10.1016/j.polar.2016.03.006.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58469451-2e2b-4b0e-a95d-ad92a8779b4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.