Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this study is to investigate the morphological (scanning electron microscopicy images), thermal (differential scanning calorimetry), and electrical (conductivity) properties and to carry out compositional analysis (Fourier-transform infrared) of produced nonwoven fibrous materials adapted in biomedical applications as scaffolds. The orientation of produced nanofilaments was also investigated because it is considered as one of the essential features of a perfect tissue scaffold. Viscosity and electrical conductivity of solutions, used in the manufacturing process, were also disassembled because these properties highly influence the morphological properties of produced nanofibers. The nanofibrous scaffolds were fabricated via conventional electrospinning technique from biopolymer, synthetic polymer, and their blends. The chitosan (CS) was chosen as biopolymer and polyethylene oxide (PEO) of low molecular weight as synthetic polymer. Solutions from pure CS were unspinnable: beads instead of nanofibers were formed via spinning. The fabrication of pure PEO nanomats from solutions of 10 wt%, 15 wt%, and 20 wt% concentrations (in distilled water) turned out to be successful. The blending of composed CS solutions with PEO ones in ratios of 1:1 optimized the parameters of electrospinning process and provided the opportunity to fabricate CS/PEO blends nanofibers. The concentration of acetic acid (AA) used to dissolve CS finely spuninned the nanofibers from blended solutions and influenced the rate of crystallization of manufactured fiber mats. The concentration of PEO in solutions as well as viscosity of solutions also influenced the diameter and orientation of formed nanofibers. The beadless, highly oriented, and defect-free nanofibers from CS/PEO solutions with the highest concentration of PEO were successfully electrospinned. By varying the concentrations of AA and low molecular weight PEO, it is possible to fabricate beadless and highly oriented nanofiber scaffolds, which freely can found a place in medical applications.
Czasopismo
Rocznik
Tom
Strony
426--440
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
- Textile Institute of Center for Physical Sciences and Technology, Demokratų str. 53, Kaunas, Lithuania
autor
- Department of Polymeric Materials, Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia
- Textile Institute of Center for Physical Sciences and Technology, Demokratų str. 53, Kaunas, Lithuania
autor
- Textile Institute of Center for Physical Sciences and Technology, Demokratų str. 53, Kaunas, Lithuania
autor
- Department of Polymeric Materials, Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia
Bibliografia
- [1] Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S. (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253
- [2] Ramakrishna, S., Fujihara, K., Teo, W., Lim, T. C., Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers (World Scientific Pub. Co. Inc., Singapore) Chapter 1 p 7
- [3] Nayak, R., Padhye, R., Kyratzis, I., Truong, Y. B., Arnold, L. (2012). Recent advances in nanofibre fabrication techniques. Textile Research Journal, 82(2), 129-147
- [4] Cong, Y., Liu, S., Chen, H. (2013). Fabrication of conductive polypyrrole nanofibers by electrospinning. Journal of Nanomaterials, p. 2 doi: 10.1155/2013/148347
- [5] Zhang, J.-F., Yang, D.-Z., Xu, F., Zhang, Z.-P., Yin, R.-X., Nie, J. (2009). Electrospun core− shell structure nanofibers from homogeneous solution of poly (ethylene oxide)/chitosan. Macromolecules, 42(14), 5278-5284
- [6] Bhardwaj, N., Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347
- [7] Huang, X. J., Ge, D., Xu, Z. K. (2007). Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. European Polymer Journal, 43(9), 3710-3718.
- [8] Greiner, A., Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703
- [9] Su, P., Wang, C., Yang, X., Chen, X., Gao, C., et al. (2011). Electrospinning of chitosan nanofibers: The favorable effect of metal ions. Carbohydrate Polymers 84(1), p. 239-246
- [10] Chen, S., Liu, B., Carlson, M. A., Gombart, A. F., Reilly, et al. (2017). Recent advances in electrospun nanofibers for wound healing. Nanomedicine, 12(11), 1335-1352.
- [11] Xu, T., Miszuk, J. M., Zhao, Y., Sun, H., Fong, H. (2015) Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Advanced Healthcare Materials, 4(15), 2238-2246.
- [12] Jun, I., Han, H. S., Edwards, J., Jeon, H. (2018). Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. International Journal of Molecular Sciences, 19(3), 745.
- [13] Murugan, R., Ramakrishna, S. (2007). Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Engineering, 13(8), 1845-1866.
- [14] Nitti, P., Gallo, N., Natta, L., Scalera, F., Palazzo, B., et al. (2018). Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. Journal of Healthcare Engineering. Article ID 3651480. DOI: 10.1155/2018/3651480
- [15] Richard-Lacroix, M., Pellerin, C. (2013). Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules, 46(24), 9473-9493.
- [16] Gnavi, S., Fornasari, B., Tonda-Turo, C., Laurano, R., Zanetti, M., et al. (2015). The effect of electrospun gelatin fibers alignment on schwann cell and axon behavior and organization in the perspective of artificial nerve design. International Journal of Molecular Sciences, 16(6), 12925-12942.
- [17] Lee, J. H., Lee, Y. J., Cho, H. J., Shin, H. (2013). Guidance of in vitro migration of human mesenchymal stem cells and in vivo guided bone regeneration using aligned electrospun fibers. Tissue Engineering Part A, 20(15-16), 2031-2042.
- [18] Pakravan, M., Heuzey, M.-C., Ajji, A. (2011). A fundamental study of chitosan/PEO electrospinning. Polymer, 52(21), 4813-4824
- [19] Angelova, N., Manolova, N., Rashkov, I., Maximova, V., Bogdanova, S., et al. (1995). Preparation and properties of modified chitosan films for drug release. Journal of Bioactive and Compatible Polymers, 10(4), 285-298
- [20] Di Martino, A., FSittinger, M., Risbud, M. V. (2005). Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26(30), 5983-5990
- [21] Heinemann, C., Heinemann, S., Bernhardt, A., Worch, H., Hanke, T. (2008). Novel textile chitosan scaffolds promote spreading, proliferation, and differentiation of osteoblasts. Biomacromolecules, 9(10), 2913-2920
- [22] Zhang, Y. Z., Su, B., Ramakrishna, S., Lim, C. T. (2008). Chitosan nanofibers from an easily electrospinnable UHMWPEO-doped chitosan solution system. Biomacromolecules, 9(1), 136-141
- [23] Yang, D., Jing, Y., Zhou, Y., Ma, G., Chen, X., et al. (2008). In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds. Macromolecular Bioscience, 8(3), 239-246
- [24] Zhou, Y., Yang, D., Chen, X., Xu, Q., Lu, F., et al. (2008). Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules, 9(1), 349-354
- [25] Huang, X., Sun, Y., Nie, J., Lu, W., Yang, L., et al. (2015). Using absorbable chitosan hemostatic sponges as a promising surgical dressing. International Journal of Biological Macromolecules, 75, 322-329
- [26] Barzegari, A., Shariatinia, Z. (2018). Fabrication of Chitosan-polyethylene oxide electrospun nanofibrous mats containing green tea extract. Iranian Journal of Chemical Engineering, 15(2), 65-77
- [27] Duan, B., Dong, C., Yuan, X., Yao, K. (2004). Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide). Journal of Biomaterials Science, Polymer Edition, 15(6), 797-811
- [28] Arkoun, M., Daigle, F., Heuzey, M. C., Ajji, A. (2017). Antibacterial electrospun chitosan-based nanofibers: A bacterial membrane perforator. Food Science & Nutrition, 5(4), 865-874
- [29] Selmer-Olsen, E., Ratnaweera, H. C., Pehrson, R. (1996). A novel treatment process for dairy wastewater with chitosan produced from shrimp-shell waste. Water Science and Technology, 34(11), 33-40
- [30] Zivanovic, S., Basurto, C. C., Chi, S., Davidson, P. M., Weiss, J. (2004). Molecular weight of chitosan influences antimicrobial activity in oil-in-water emulsions. Journal of Food Protection, 67(5), 952-959
- [31] Qasim, S., Zafar, M., Najeeb, S., Khurshid, Z., Shah, A., et al. (2018). Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. International Journal of Molecular Sciences, 19(2), 407.
- [32] Li, L., Hsieh, Y. L. (2006). Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydrate Research, 341(3), 374-381
- [33] Desai, K., Kit, K., Li, J.and Zivanovic, S. (2008). Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules, 9(3), 1000-1006
- [34] Geng, X. Y., Kwon, O. H., Jang, J. H. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432
- [35] Min, B. M., Lee, S. W., Lim, J. N., You, Y., Lee, T. S., Kang, P. H., Park, W. H. (2004). Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer, 45(21), 7137-7142
- [36] Zivanovic, S., Li, J., Davidson, P. M. Kit, K. (2007). Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules, 8(5), 1505-1510
- [37] Elsabee, M. Z., Naguib, H. F., Morsi, R. E. (2012). Chitosan based nanofibers, review. Materials Science and Engineering: C, 32(7), 1711-1726
- [38] Subramanian, A., Vu, D., Larsen, G. F., Lin, H.-Y. (2005). Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. Journal of Biomaterials Science, Polymer Edition, 16(7), 861-873
- [39] An, A., Zhang, H., Zhang, J., Zhao, Y., Yuan, X. (2009). Preparation and antibacterial activity of electrospun chitosan/poly (ethylene oxide) membranes containing silver nanoparticles. Colloid and Polymer Science, 287(12), p. 1425-1434
- [40] Rezakhaniha, R., Agianniotis, A., Schrauwen, J. T. C., Griffa, A., Sage, D., Bouten, C. V. C., van de Vosse, F. N., Unser, M., Stergiopulos, N. (2012). Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and Modeling in Mechanobiology, 11(3-4), 461-473Z.
- [41] Püspöki, Storath, M., Sage, D., Unser, M. (2016). Transforms and operators for directional bioimage analysis: a survey. In Focus on Bio-Image Informatics (Springer, Cham) p. 68
- [42] EN ISO 11357-1: 2016. Plastics - Differential scanning calorimetry (DSC) - Part 1: General principles (ISO 11357-1:2016)
- [43] Kong, Y., Hay, J. N. (2002). The measurement of the crystallinity of polymers by DSC. Polymer, 43(14), 3873-3878
- [44] Faridi-Majidi, R., Sharifi-Sanjani, N. (2007). In situ synthesis of iron oxide nanoparticles on poly (ethylene oxide) nanofibers through an electrospinning process. Journal of Applied Polymer Science, 105(3), 1351-1355
- [45] Lubentsov, B., Timofeeva, O., Saratovskikh, S., Krinichnyi, V., Pelekh, A., et al. (1992). The study of conducting polymer interaction with gaseous substances IV. The water content influence on polyaniline crystal structure and conductivity. Synthetic Metals, 47(2), 187-192
- [46] Zhou, S. M., Tashiro, K., Ii, T. (2001). Confirmation of universality of time–humidity superposition principle for various water-absorbable polymers through dynamic viscoelastic measurements under controlled conditions of relative humidity and temperature. Journal of Polymer Science Part B: Polymer Physic, 39(14), 16381650
- [47] Klossner, R. R., Queen, H. A., Coughlin, A. J., Krause, W. E. (2008). Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules, 9(10), 2947-2953
- [48] Mir, S., Yasin, T., Halley, P. J., Siddiqi, H. M., Nicholson, T. (2011). Thermal, rheological, mechanical and morphological behavior of HDPE/chitosan blend. Carbohydrate Polymers, 83(2), 414-421
- [49] Kriegel, C., Kit, K. M., McClements, D., Weiss, J. (2009). Electrospinning of chitosan–poly (ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer, 50(1), 189-200
- [50] Qasim, S. B., Najeeb, S., Delaine-Smith, R. M., Rawlinson, A., Rehman, I. U. (2017). Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dental Materials, 33(1), p. 71-83.
- [51] Feng, Z. Q., Leach, M. K., Chu, X. H., Wang, Y. C., Tian, T., Shi, X. L.,... Gu, Z. Z. (2010). Electrospun chitosan nanofibers for hepatocyte culture. Journal of Biomedical Nanotechnology, 6(6), 658-666.
- [52] Homayoni, H., Ravandi, S. A. H., Valizadeh, M. (2009). Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77(3), 656-661
- [53] Erdem, R., Akalın, M. (2015). Characterization and evaluation of antimicrobial properties of electrospun chitosan/polyethylene oxide based nanofibrous scaffolds (with/without nanosilver). Journal of Industrial Textiles, 44(4), 553-571
- [54] Malheiro, V. N., Caridade, S. G., Alves, N. M., Mano, J. F. (2010). New poly (ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomaterialia, 6(2), 418-428
- [55] Chen, Z., Mo, X., He, C., Wang, H. (2008). Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydrate Polymers, 72(3), 410-418
- [56] Rakkapao, N., Vao-soongnern, V., Masubuchi, Y., Watanabe, H. (2011). Miscibility of chitosan/poly (ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction. Polymer, 52(12), 2618-2627
- [57] Qasim, S. B., Delaine-Smith, R. M., Fey, T., Rawlinson, A., Rehman, I. U. (2015). Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomaterialia, 23, 317-328.
- [58] Qasim, S. B., Husain, S., Huang, Y., Pogorielov, M., Deineka, V., et al. (2017). In-vitro and in-vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications. Polymer Degradation and Stability, 136, 31-38.
- [59] Sun, K., Li, Z. H. (2011). Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polymer Letters, 5(4), 342-361
- [60] Zivanovic, S., Li, J., Davidson, P. M., Kit, K. (2007). Biomacromolecules, Physical, mechanical, and antibacterial properties of chitosan/PEO blend films, 8(5), 1505-1510
- [61] Duan, B., Dong, C., Yuan, X., Yao, K. (2004). Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide). Journal of Biomaterials Science, Polymer Edition, 15(6), 797-811
- [62] Garcia, C. E. G., Martínez, F. A. S., Bossard, F., Rinaudo, M. (2018). Biomaterials based on electrospun chitosan. Relation between processing conditions and mechanical properties. Polymers, 10(3), 257-276
- [63] Mengistu Lemma, S., Bossard, F., Rinaudo, M. (2016). Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly(ethylene oxide) International Journal of Molecular Sciences, 17(11), 1790-1806
- [64] Li, L., Hsieh, Y. L. (2006). Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydrate Research, 341(3), 374-381
- [65] Spasova, M., Manolova, N., Paneva, D., Rashkov, I. (2004). Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly (ethylene oxide) blend solutions. E-Polymers, 4(1), 624-635
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5845d30e-677f-45c2-9692-d4d49583e919