Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Zwiększenie kąta elewacji dla anteny z falą wyciekającą
Języki publikacji
Abstrakty
A new design for array leaky-wave antenna to achieve high elevation angle and obtain high radiation pattern on boresight is proposed in this study. Two half-width microstrip leaky-wave antennas are placed horizontally and used one fed probe between them. The other side of the halfwidth used lumped element (matching load 50 ohm). An array of vias was used to connect the radiation element with the ground plane to make the microstrip line work in the first high order mode. The main beam direction can be changed by control the reactance of the microstrip line with the free edges of radiation elements and the ground. This controlling led to the use of two vertical vias array alone the radiation element of each antenna. The simulated result produced a high matched bandwidth of the array of 800 MHZ (4.2- 5) GHz. The direction of the main beam scanning towards in boresight with maximum gain 12.9 dBi. The elevation angle can be scanning between 22o to 65o. The proposed antenna is promising to the C-band applications.
W opracowaniu zaproponowano nowy projekt anteny z falą wyciekającą w celu uzyskania dużego kąta elewacji i uzyskania poprawy charakterystyki promieniowania podczas celowania. Dwie mikropaskowe anteny z falą wyciekającą o połowie szerokości są umieszczone poziomo i umieszcza się między nimi jedną sondę zasilaną. Druga strona półszerokości zastosowano pasujące obciążenie 50 omów. Do połączenia elementu radiacyjnego z płaszczyzną uziemienia zastosowano szereg przelotek, aby linia mikropaskowa działała w pierwszym trybie wysokiego rzędu. Kierunek wiązki głównej można zmienić, kontrolując reaktancję linii mikropaskowej ze swobodnymi krawędziami elementów radiacyjnych i uziemienia. To sterowanie doprowadziło do użycia dwóch pionowych szyków przelotek, które same stanowią element radiacyjny każdej anteny. Symulowany wynik dał wysoką dopasowaną przepustowość macierzy 800 MHz (4,2-5) GHz. Kierunek skanowania wiązki głównej w kierunku celownika z maksymalnym wzmocnieniem 12,9 dBi. Kąt elewacji może być skanowany w zakresie od 22o do 65o. Proponowana antena jest obiecująca dla zastosowań w paśmie C.
Wydawca
Czasopismo
Rocznik
Tom
Strony
109--113
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
- College of computer science and information technology, University of Kerbala, Iraq
autor
- College of computer science and information technology, University of Kerbala, Iraq
- Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, Malaysia
Bibliografia
- [1] M. K. Mohsen et al., “The Fundamental of Leaky Wave Antenna,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 1, pp. 119–127, 2018.
- [2] M. K. Mohsen, M. S. M. Isa, A. A. M. Isa, M. K. Abdulhameed, M. L. Attiah, and A. M. Dinar, “Enhancement bandwidth of half width-microstrip leaky wave antenna using circular slots,” Prog. Electromagn. Res. C, vol. 94, no. July, pp. 59–74, 2019.
- [3] M. Hamada, B. B. Zaidan, and A. A. Zaidan, “A Systematic Review for Human EEG Brain Signals Based Emotion Classification, Feature Extraction, Brain Condition, Group Comparison,” J. Med. Syst., vol. 42, no. 9, 2018.
- [4] A. J. A. Al-gburi, I. M. Ibrahim, and Z. Zakaria, “A Miniature Raspberry Shaped UWB Monopole Antenna based on Microwave Imaging Scanning Technique for Kidney Stone Early Detection,” Int. J. Psychosoc. Rehabil., vol. 24, pp. 1755– 1763, 2020.
- [5] M. K. Mohsen et al., “Achieving Fixed – Frequency Beam Scanning with a Microstrip Leaky – Wave Antenna Using Double Gaps Capacitor Technique,” IEEE Antennas Wirel. Propag. Lett., vol. 1225, no. c, 2019.
- [6] A. J. A. Al-gburi, I. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, “Compact Size and High Gain of CPW-fed UWB Strawberry Artistic shaped Printed Monopole Antennas using FSS Single Layer Reflector,” IEEE Access, vol. 8, no. 5, pp. 92697–92707, 2020.
- [7] H. H. Keriee et al., “High gain antenna at 915 mhz for off grid wireless networks,” Bull. Electr. Eng. Informatics, vol. 9, no. 6, pp. 2449–2454, 2020.
- [8] M. K. Mohsen, M. S. M. Isa, A. A. M. Isa, Z. Zakaria, and M. K. Abdulhameed, “Control Radiation Pattern for Half Width Microstrip Leaky Wave Antenna by using PIN Diodes,” Int. J. Electr. Comput. Eng., vol. 8, no. 5, pp. 2959–2966, 2018.
- [9] M. K. Mohsen et al., “Electronically controlled radiation pattern leaky wave antenna array for (C band) application,” Telkomnika (Telecommunication Comput Electron Control), vol. 17, no. 2, pp. 573–579, 2019.
- [10] Abdulhameed M. K., et al., “Controlling the Radiation Pattern of Patch Antenna Using Switchable EBG,” TELKOMNIKA (Telecommunication Comput Electron Control), vol. 16, no. 5, pp. 2014-22, 2018.
- [11] D. K. Karmokar, K. P. Esselle, and S. G. Hay, “Fixed- Frequency Beam Steering of Microstrip Leaky-Wave Antennas Using Binary Switches,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2146–2154, 2016.
- [12] Abdulhameed M. K., et al., “Radiation control of microstrip patch antenna by using electromagnetic band gap,” International Journal of Electronics and Communications (AEÜ), 110 (2019) 152835, pp. 1-11, 2019.
- [13] Abdulhameed MK, Isa MSM, Z.Zakaria, K.Mohsin M, Attiah ML. “Side lobe reduction in array antenna by using novel design of EBG,” Int J Electr Comput Eng., vol. 10, no. 1, pp. 308-315, 2020.
- [14] M. Khadom et al., “Design for radiation broadside direction using half-width microstrip leaky-wave antenna array,” AEUE - Int. J. Electron. Commun., vol. 110, p. 152839, 2019.
- [15] M. K. Mohsen, M. S. M. Isa, T. A. Rahman, M. K. Abdulhameed, A. A. M. Isa, and M. S. I. M. Z. S. Saat, “Novel Design and Implementation of MIMO Antenna for LTE Application,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 2, pp. 43–49, 2018.
- [16] Abdulhameed M. K. et al., “Enhanced performance of compact 2 × 2 antenna array with electromagnetic band-gap,” Microw. Opt. Technol. Lett., vol. 62, no. 2, pp. 875–886, 2020.
- [17] A. Grbic and G. V Eleftheriades, “Leaky CPW-based slot antenna arrays for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 50, no. 11, pp. 1494–1504, 2002.
- [18] M. K. Abdulhameed, M. S. M. Isa, Z. Zakaria, and I. M. Ibrahim, “Novel design of triple-band EBG,” TELKOMNIKA, vol. 17, no. 4, 2019.
- [19] R. Adawiyah et al., “Return Loss Improvement of Radial Line Slot Array Antennas on Closed Ring Resonator Structure at 28 GHz,” Przegląd Elektrotechniczny, no. 5, pp. 65–69, 2021.
- [20] A. J. A. Al-gburi et al., “A compact UWB FSS single layer with stopband properties for shielding applications,” Przegląd Elektrotechniczny, no. 2, pp. 167–170, 2021.
- [21] Abdulhameed M. K., et al., “Radiation Pattern Control of Microstrip Antenna in Elevation and Azimuth Planes Using EBG and Pin Diode,” Int J Electr Comput Eng., vol. 9, no. 1, pp 332 - 340, 2019.
- [22] D. K. Karmokar, Y. J. Guo, P. Qin, K. P. Esselle, T. S. Bird, and L. Fellow, “Forward and Backward Beam-Scanning Tri-Band Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1891–1894, 2017.
- [23] M. Khadom et al., “Novel and active technique for controlling the radiation pattern of the half-width microstrip leaky wave antenna array,” AEUE - Int. J. Electron. Commun., vol. 110, p. 152823, 2019.
- [24] M. K. Mohsen, M. S. M. Isa, A. A. M. Isa, and M. K. Abdulhameed, “Enhancement of boresight radiation for leaky wave antenna array,” TELKOMNIKA, vol. 17, no. 5, pp. 2179– 2185, 2019.
- [25] Abdulhameed M. K., M. S. M. Isa, Z. Zakaria, and I. M. Ibrahim, “Novel design of triple-band EBG,” TELKOMNIKA, vol. 17, no. 4, pp.1683-1691, 2019
- [26] D. K. Karmokar, K. P. Esselle, D. N. P. Thalakotuna, M. Heimlich, and L. Matekovits, “A leaky-wave antenna for beam steering in forward and backward directions,” in 2013 1st IEEE TENCON Spring Conference, TENCONSpring 2013, 2013, pp. 47–50.
- [27] D. K. Karmokar, Y. J. Guo, P.-Y. Qin, S.-L. Chen, and T. S. Bird, “Substrate integrated waveguide-based periodic backward-to-forward scanning leaky-wave antenna with low cross-polarization,” IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 3846–3856, 2018.
- [28] M. Y. Zeain, M. Abu, A. J. A. Al-gburi, Z. Zakaria, R. Syahputri, and A. Toding, “Design of a wideband strip helical antenna for 5G applications,” Bull. Electr. Eng. Informatics, vol. 9, no. 5, pp. 1958–1963, 2020.
- [29] M. Y. Zeain, Z. Zakaria, J. Ahmed, and M. Th, “Design of Helical Antenna for Next Generation Wireless Communication,” Przegląd Elektrotechniczny, vol. 11, pp. 96–99, 2020.
- [30] A. J. A. Al-Gburi, I. Ibrahim, and Z. Zakaria, “Gain Enhancement for Whole Ultra-Wideband Frequencies of a Microstrip Patch Antenna,” J. Comput. Theor. Nanosci., vol. 17, no. 2–3, pp. 1469–1473, 2020.
- [31] M. K. Mohsen, M. S. M. Isa, Z. Zakaria, A. A. M. Isa, and M. K. Abdulhameed, “Electronically controlled radiation pattern leaky wave antenna array for ( C band ) application,” TELKOMNIKA, vol. 17, no. 2, pp. 573–579, 2019.
- [32] Abdulhameed M. K., M. S. M. Isa, I. M. Ibrahim, M. K. Mohsen, S. R. Hashim, and M. L. Attiah, “Improvement of microstrip antenna performance on thick and high permittivity substrate with electromagnetic band gap,” J. Adv. Res. Dyn. Control Syst., vol. 10, no. 4 Special Issue, pp. 661–669, 2018.
- [33] D. K. Karmokar and K. P. Esselle, “Antennas with digitally steerable beams for modern wireless communication systems,” in 35th IEEE Region 10 Conference, TENCON 2015, 2016, vol. 2016-Janua.
- [34] K. M. Morshed, D. K. Karmokar, and K. P. Esselle, “Highly Efficient Leaky-Wave Antenna Array for 28-GHz Millimeter- Wave Terminals,” in 85th IEEE Vehicular Technology Conference, VTC Spring 2017, 2017, vol. 2017-June.
- [35] Abdulhameed M.K., M. S. M. Isa, Z.Zakaria, M. K.Mohsin, and M. L. Attiah, “Mushroom-Like EBG to Improve Patch Antenna Performance For C-Band Satellite Application,” Int. J. Electr. Comput. Eng., vol. 8, no. 5, pp. 3875–3881, 2018.
- [36] Abdulhameed M. K., M. S. M. Isa, I. M. Ibrahim, M. S. I. M. Zin, Z. Zakaria, and M. K. Mohsin, “Review of Radiation Pattern Control Characteristics for The Microstrip Antenna Based On Electromagnetic Band Gap ( EBG ),” Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 10, no. 3, pp. 129–140, 2018.
- [37] A. J. A. Al-gburi, I. M. Ibrahim, and Z. Zakaria, “Band-notch effect of U-shaped split ring resonator structure at ultra wideband monopole antenna,” Int. J. Appl. Eng. Res., vol. 12, no. 15, pp. 4782–4789, 2017.
- [38] I. M. Ibrahim, A. J. A. Al-gburi, Z. Zakaria, and H. A. Bakar, “Parametric Study of Modified U-shaped Split Ring Resonator Structure Dimension at Ultra-Wide-band Monopole Antenna,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 2–5, pp. 53– 57, 2018.
- [39] A. J. A. Al-gburi et al., “High Gain of UWB CPW-fed Mercedes- Shaped Printed Monopole Antennas for UWB Applications,” Prz. Elektrotechniczny, no. 5, pp. 70–73, 2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58451016-7785-4390-b951-bb44408ff9e7