PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Canola oil electooxitadion on smooth platinum electrode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As fuel for fuel cells can be used various substances, but mainly fuel cells are powered by clear hydrogen (or hydrogen obtained from organic substances by reforming process). However, problems with the storage of hydrogen are the reason for the search of new fuels for fuel cells. Due to development of the renewable energy sources, the powering of fuel cells with bio-fuels is very important. Vegetable oil is an alternative fuel for diesel engines and for heating oil burners. Powering high efficiency power sources like fuel cells with renewable fuels (like canola oil) will allow development of renewable energy sources and elimination or reduce of toxic substances emissions. The paper presents the possibility of using canola oil as fuel for direct electricity production. The work shows possible electrooxidation of canola oil emulsion on a smooth platinum electrode in an solution of H2SO4. The resulting current density of canola oil electrooxidation reached the maximum level of 8 mA/cm2. So, the possibility of using canola oil as fuel for direct electricity production has been proved.
Rocznik
Tom
Strony
589--598
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • University of Opole, Department of Process Engineering, ul. Dmowskiego 7-9, 45-365 Opole
  • University of Opole, Department of Process Engineering, ul. Dmowskiego 7-9, 45-365 Opole
Bibliografia
  • Agarwal, A.K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33: 233-271.
  • Bocheński, C., Bocheńska, A. (2008). Rape oil as a fuel for diesel engines. Czasopismo Techniczne, Wydawnictwo Politechniki Krakowskiej, 8M: 133-142.
  • Bockris, J.O.M., Reddy, A.K.N. (2000). Modern electrochemistry. New York: Kulwer Academic/Plenum Publishers.
  • Holtzer, M., Staronka, A. (2000). Chemia fizyczna. Wprowadzenie. Kraków: Wydawnictwo AGH.
  • Hoogers, G. (2003). Fuel cell technology handbook. Boca Raton: CRC Press.
  • Ignatov, O.V., Shalunova, Iu.V., Panchenko, L.V., Turkovskaia, O.V., Ptichkina, N.M. (1995). Degradation of Syntanol DS-10 by bacteria immobilized in polysaccharide gels (article in Russian), Prikl Biokhim Mikrobiol., 31 (2): 220-223.
  • Kakaç, S., Pramuanjaroenkij, A., Vasilev, L. (Eds.). (2007). Mini-micro fuel cells: Fundamentals and applications. New York: Springer-Verlag.
  • Kravchenko, A.V., Rudnitskii, A.G., Nesterenko, A.F., Kublanovskii, V.S. (1994). Degradation of Syntanol DS-10 promoted by energy transfer reactions, Ukrainian Chemistry Journal C/C of Ukrainskii Khimicheskii Zhurnal, 60 (11): 11-13.
  • Larminie, J., Dicks, A. (2003). Fuel cell system explained, 2nd Edition. John Wiley & Sons Ltd.
  • Ma, F., Hanna, M.A. (1999). Biodiesel production: a review, Bioresource Technology, 70 (1): 1-15.
  • Nag, A., Bhattacharya, S., De, K.B. (1995). New utilization of vegetable oils, J. Am. Oil Chem. Soc., 72(12): 1591-1593.
  • Nowicki, J., Zięcina, K. (1989). Samoloty kosmiczne. Wydawnictwa Naukowo-Techniczne.
  • O’Hayre, R., Cha, S.W., Colella, W., Prinz, F.B. (2005). Fuel cell fundamentals. Hoboken: John Wiley & Sons.
  • Paraska, O., Karvan, S. (2010). Mathematical modelling in scientific researches of chemical technology processes. Technical Transactions. Mechanics, Cracow University of Technology Press, 8 (107): 203-210.
  • Peterson, C.L., Wagner, G.L., Auld, D.L. (1983). Vegetable oil substitutes for diesel fuel. Transactions of the ASAE, 26 (2): 322-327.
  • Recep, A., Selim, C., Huseyin, S. (2001). The potential of using vegetable oil as fuel for diesel engine. Energy Conversion & Management, 40: 529-538.
  • Redey, L. (1973). Ogniwa paliwowe. Warszawa: Wydawnictwa Naukowo-Techniczne.
  • Sakharov, Iu.I., Rastiannikov, E.G., Verbitskaia, G.M., Tarasova, L.N. (1975). Washability of syntanol DS-10 from kitchen utensils (article in Russian), Vopr Pitan., 4: 75-7.
  • Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., Shapouri, H. (1998). An overview of biodiesel and petroleum diesel life cycles. National Renewable Energy Laboratory, Prepared for U.S. Department of Energy’s Office of Fuels Development and U.S. Department of Agriculture’s Office of Energy.
  • Stolten, D. (2010). Hydrogen and fuel cells. Fundamentals, technologies and applications. Weinheim: Wiley-VCH.
  • Survila, A., Mockus, Z., Kanapeckaitė, S., Samulevičienė, M. (2005). Effect of syntanol DS-10 and halides on tin(II) reduction kinetics. Electrochimica Acta, 50 (14): 2879-2885. https://doi.org/10.1016/j.electacta.2004.11.034.
  • Van Gerpen, J. (2005). Biodiesel processing and production. Fuel Processing Technology, 86 (10):1097-1107.
  • Włodarczyk, P.P., Włodarczyk, B. (2013). Powering fuel cell with crude oil. Journal of Power Technologies, 93 (5): 394-396.
  • Włodarczyk, P.P., Włodarczyk B. (2016a). Canola oil electrooxidation in an aqueous solution of KOH - Possibility of alkaline fuel cell powering with canola oil. Journal of Power Technologies, 96 (6).
  • Włodarczyk, P.P., Włodarczyk, B., (2016b). Electrooxidation of diesel fuel in alkaline electrolyte. Infrastructure and Ecology of Rural Areas, 4 (1): 1071-1080. DOI: http://dx.medra.org/10.14597/infraeco.2016.4.1.078.
  • Włodarczyk, P.P., Włodarczyk, B., Kalinichenko, A. (2017a). Possibility of direct electricity production from waste canola oil. E3S Web of Conferences, 19, 01019. DOI: 10.1051/e3sconf/20171901019.
  • Włodarczyk, P.P., Włodarczyk, B. (2017b). Electrooxidation of coconut oil in alkaline electrolyte. Journal of Ecological Engineering, 18 (5): 173-179. DOI: 10.12911/22998993/74623.
  • Włodarczyk, P.P., Włodarczyk, B. (2017c). Elektroutlenianie odpadowego syntetycznego oleju silnikowego w wodnym roztworze H2SO4. Inżynieria Ekologiczna, 18 (1): 65-70. DOI: 10.12912/23920629/66985.
  • Włodarczyk, P.P., Włodarczyk, B. (2017d). Electricity production from waste engine oil from agricultural machinery. Infrastructure And Ecology Of Ruras Areas, 4 (2): 1609-1618. DOI: http://dx.medra.org/10.14597/infraeco.2017.4.2.121.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58442b88-0451-413e-ac45-b61a76f0d6dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.