PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Estimation of settling velocity using generalized reduced gradient (GRG) and hybrid generalized reduced gradient–genetic algorithm (hybrid GRG GA)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study describes the settling velocity phenomenon and deals with the methods for its estimation. The accuracy of three previously proposed settling velocity equations is also checked in this study. After graphical and statistical analysis, the authors proposed generalized reduced gradient (GRG) and hybrid generalized reduced gradient–genetic algorithm (hybrid GRG-GA) approaches for the estimation of settling velocity. Hybrid GRG-GA-based settling velocity approach showed more precise results than GRG approach. In addition, hybrid GRG-GA and GRG approaches were compared with previously proposed equations using 226 data points. The graphical and statistical analysis shows that the hybrid GRG-GA and GRG approaches give better agreement with observed data points as compared to previously proposed equations. Application of hybrid GRG-GA reduces the sum of square of error in fall velocity by over 70% and 30% on an average as compared to previous equations during training and testing, respectively. This study highlights that the hybrid GRG-GA approach could be efficiently used for calculating the settling velocity.
Czasopismo
Rocznik
Strony
2487--2497
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Water Resources and Environmental Div., Civil Engineering Department, NIT Warangal, Warangal, Telangana, India
  • Water Resources and Environmental Div., Civil Engineering Department, NIT Warangal, Warangal, Telangana, India
  • Department of Civil Engineering, MANUU, Hyderabad, India
Bibliografia
  • 1. Ahrens JP (2000) A fall-velocity equation. J Waterw Port Coast Ocean Eng 126(2):99–102
  • 2. Azamathulla HM, Chang CK, Ghani AA, Ariffin J, Zakaria NA, Hasan ZA (2009) An ANFIS-based approach for predicting the bed load for moderately sized rivers. J Hydro-Environ Res 3(1):35–44
  • 3. Azamathulla HM, Ghani AA, Fei SY (2012) ANFIS-based approach for predicting sediment transport in clean sewer. Appl Soft Comput 12(3):1227–1230
  • 4. Barati R (2013) Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J Civ Eng 17(5):1139–1148
  • 5. Bhattacharya B, Price RK, Solomatine DP (2007) Machine learning approach to modeling sediment transport. J Hydraul Eng 133(4):440–450
  • 6. Bowden GJ, Maier HR, Dandy GC (2012) Real-time deployment of artificial neural network forecasting models: understanding the range of applicability. Water Resour Res 48(10):2–16
  • 7. Briggs LI, McCulloch DS, Moser F (1962) The hydraulic shape of sand particles. J Sediment Res 32(4):645–656
  • 8. Camenen B (2007) Simple and general formula for the settling velocity of particles. J Hydraul Eng 133(2):229–233
  • 9. Chaplot B, Birbal P (2021) Development of stage-discharge rating curve using ANN. Int J Hydrol Sci Technol. https://doi.org/10.1504/IJHST.2021.10034758
  • 10. Cheng NS (1997) Simplified settling velocity formula for sediment particle. J Hydraul Eng 123(February):149–152
  • 11. Dietrich WE (1982) Settling velocity of natural particles. Water Resour Res 18(6):1615–1626
  • 12. Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial streams, vol 10. Technical University of Denmark, Copenhagen, Denmark
  • 13. Gibbs RJ, Matthews MD, Link DA (1971) The relationship between sphere size and settling velocity. J Sediment Res 41(1):7–18
  • 14. Goldstein EB, Coco G (2014) A machine learning approach for the prediction of settling velocity. Water Resour Res 50(4):3595–3601
  • 15. Graf WH (1984) Hydraulics of sediment transport. Water Resources Publication
  • 16. Hallermeier RJ (1981) Terminal settling velocity of commonly occurring sand grains. Sedimentology 28(6):859–865
  • 17. Jiménez JA, Madsen OS (2003) A simple formula to estimate settling velocity of natural sediments. J Waterw Port Coast Ocean Eng 129(2):70–78
  • 18. Julien PY (2010) Erosion and sedimentation. Cambridge University Press, Cambridge
  • 19. Lange H, Sippel S (2020) Machine learning applications in hydrology. In: Levia DF, Carlyle-Moses DE, Iida S, Michalzik B, Nanko K, Tischer A (eds) Forest–water interactions. Springer, Cham, pp 233–257
  • 20. Mahtabi G, Chaplot B, Azamathulla HM, Mhesh P (2020) Classification of hydraulic jump in rough beds. Water J 12:2249
  • 21. Maier HR, Kapelan Z, Kasprzyk J, Kollat J, Matott LS, Cunha MC, Reed PM (2014) Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ Model Softw 62:271–299
  • 22. Nawaz AR, Zakwan M, Khan I, Rahim ZA (2020) Comparative analysis of variants of muskingum model. Water Energy Int 63(7):64–73
  • 23. Niazkar M, Zakwan M (2021) Assessment of artificial intelligence models for developing single-value and loop rating curves. Complexity 2021:1–21
  • 24. Oehler F, Coco G, Green MO, Bryan KR (2012) A data-driven approach to predict suspended-sediment reference concentration under non-breaking waves. Cont Shelf Res 46:96–106
  • 25. Pandey M, Zakwan M, Khan MA, Bhave S (2020a) Development of scour around a circular pier and its modelling using genetic algorithm. Water Supply 20(8):3358–3367
  • 26. Pandey M, Zakwan M, Sharma PK, Ahmad Z (2020b) Multiple linear regression and genetic algorithm approaches to predict temporal scour depth near circular pier in non-cohesive sediment. Indian Soc Hyraul J Hydraul Eng 26(1):96–103
  • 27. Pu JH (2019) Turbulent rectangular compound open channel flow study using multi-zonal approach. Environ Fluid Mech 19(3):785–800
  • 28. Pu JH (2021) Velocity profile and turbulence structure measurement corrections for sediment transport-induced water-worked bed. Fluids 6(2):86
  • 29. Pu JH, Pandey M, Hanmaiahgari PR (2020) Analytical modelling of sidewall turbulence effect on streamwise velocity profile using 2D approach: a comparison of rectangular and trapezoidal open channel flows. J Hydro-Environ Res 32:17–25
  • 30. Pu JH, Wallwork JT, Khan M, Pandey M, Pourshahbaz H, Satyanaga A, Hanmaiahgari PR, Gough T (2021) Flood suspended sediment transport: combined modelling from dilute to hyper-concentrated flow. Water (MDPI) 13(3):379
  • 31. Raudkivi AJ (1990) Loose boundary hydraulics, 3rd ed. Technical report, Pergamon Press, Oxford
  • 32. Rijn LCV (1984) Sediment transport, part II: suspended load transport. J Hydraul Eng 110(11):1613–1641
  • 33. Ruby W (1933) Settling velocities of gravel, sand and silt particles. Am J Sci 25:325–338
  • 34. Rushd S, Hafsa N, Al-Faiad M, Arifuzzaman M (2021) Modeling the settling velocity of a sphere in Newtonian and non-Newtonian fluids with machine-learning algorithms. Symmetry 13(1):71
  • 35. Singh UK, Ahmad Z, Kumar A, Pandey M (2019) Incipient motion for gravel particles in cohesionless sediment mixtures. Iran J Sci Technol Trans Civ Eng 43(2):253–262
  • 36. Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Thomas Telford, London
  • 37. Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums
  • 38. Swamee PK, Ojha CSP (1991) Drag coefficient and fall velocity of nonspherical particles. J Hydraul Eng 117(5):660–667
  • 39. Wu W, Wang SS (2006) Formulas for sediment porosity and settling velocity. J Hydraul Eng 132(8):858–862
  • 40. Yang XS, Gandomi AH, Talatahari S, Alavi AH (eds) (2012) Metaheuristics in water, geotechnical and transport engineering. Newnes, London
  • 41. Yang XS (2013) Optimization and metaheuristic algorithms in engineering. In: Metaheuristics in water, geotechnical and transport engineering, pp 1–23
  • 42. Yazdian M, Rakhshandehroo G, Nikoo MR, Mooselu MG, Gandomi AH, Honar T (2021) Groundwater sustainability: developing a non-cooperative optimal management scenario in shared groundwater resources under water bankruptcy conditions. J Environ Manag 292:112807
  • 43. Yoon HD, Cox DT, Kim M (2013) Prediction of time-dependent sediment suspension in the surf zone using artificial neural network. Coast Eng 71:78–86
  • 44. Zakwan M, Niazkar M (2021) A comparative analysis of data-driven empirical and artificial intelligence models for estimating infiltration rates. Complexity 2021:1–13
  • 45. Zanke U (1977) Berechnung der sinkgeschwindigkeiten von sedimenten. Mitt. Des Franzius-Instituts fuer wasserbau, Heft 46, Seite 243, Technical University, Hannover, Germany
  • 46. Zhang RJ (1961) River dynamics. Industry Press, Beijing (in Chinese)
  • 47. Zhu LJ, Cheng NS (1993) Settlement of sediment particles. Resp. Rep., Department of River and Harbor Engineering Nanjing Hydraulic Research Institute, Nanjing, China (in Chinese)
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58433427-082c-41cb-b9af-4ff5fef7f795
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.