Identyfikatory
Warianty tytułu
Non-Binary LDPC coding for Internet of Things
Języki publikacji
Abstrakty
Artykuł dotyczy implementacji niebinarnego kodera LDPC dla urządzeń IoT. W artykule zaproponowano wykorzystanie efektywnego algorytmu kodowania LDPC (Low Density Parity Check) w urządzeniach o mocno ograniczonych zasobach – pamięci oraz mocy obliczeniowej. Wskazano algorytm kodujący uogólniony do kodów niebinarnych nad ciałem GF(2q) oraz przedstawiono wyniki eksperymentalne implementacji w układzie typowego mikrokontrolera. W publikacji pokazano porównanie zależności czasowych dla kodów nad różnymi rzędami ciał GF. Pokazano wpływ wyboru kodu na potencjalne zużycie energii.
The article concerns the implementation of a non-binary LDPC encoder for IoT devices. The article proposes the use of an effective LDPC (Low Density Parity Check) coding algorithm in devices with very limited resources – memory and computing power. A coding algorithm generalized to non-binary codes over the GF(2q) is indicated and experimental results of implementation in a typical microcontroller system are presented. The publication shows a comparison of time dependencies for codes over different orders of GF fields. The impact of code selection on potential energy consumption is also shown.
Wydawca
Czasopismo
Rocznik
Tom
Strony
249--256
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- TKH Technology Poland Sp. z.o.o.
- Institute of Automatic Control and Robotics, Electrinics and Telefomunication, Silesian University of Technology ul. Akademicka 2a, 44-100 Gliwice, Poland
autor
- Institute of Automatic Control and Robotics, Electrinics and Telefomunication, Silesian University of Technology ul. Akademicka 2a, 44-100 Gliwice, Poland
Bibliografia
- [1] Ieee 802.11-2016. ieee standard for information technology– telecommunications and information exchange between systems local and metropolitan area networks–specific requirements - part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications, 2016.
- [2] Salima Belhadj and Moulay Lakhdar Abdelmounaim. On error correction performance of ldpc and polar codes for the 5g machine type communications. In 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pages 1–4, 2021.
- [3] Vishal A. Dubal and Y. Srinivasa Rao. A low-power high-performance sensor node for internet of things. In IEEE Second International Conference on Intelligent Computing and Control Systems (ICICCS), pages 607–612, Madurai, India, June 2018.
- [4] ETSI Standard: EN 302 307 v1.1.1, Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications, 2005.
- [5] Marc P. C. Fossorier, Miodrag Mihaljevic, and Hideki Imai. Reduced Complexity Iterative Decoding of Low-Density Parity Check Codes Based on Belief Propagation. IEEE Transactions on Communications, 47, No. 5:673–680, May 1999.
- [6] Robert G. Gallager. Low-Density Parity-Check Codes. IRE Transactions on Information Theory, IT-8:21–28, January 1962.
- [7] Jakub Hyla and Wojciech Sułek. Dekoder ldpc implementowany w mikrokontrolerze dla systemów internetu rzeczy. Przedl ˛ad Elektrotechniczny, (04/2023):133, 2023.
- [8] Jakub Hyla and Wojciech Sułek. Energy-efficient raptor-like ldpc coding scheme design and implementation for iot communication systems. Energies, 16(12), 2023.
- [9] Jakub Hyla, Wojciech Sułek, Weronika Izydorczyk, Leszek Dziczkowski, and Wojciech Filipowski. Efficient ldpc encoder design for iot-type devices. Applied Sciences, 12(5), 2022.
- [10] IEEE Standard: IEEE P802.11n=D10. Draft IEEE Standard for Local Metropolitan Networks – Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC), and Physical Layer (PHY) specifications: Enhancements for Higher Throughput, March 2006.
- [11] Shu Lin and Daniel J. Costello, Jr. Error Control Coding: Fundamentals and Applications, 2nd Edition. Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458, 2004.
- [12] David J. C. MacKay. Good Error-Correcting Codes Based on Very Sparse Matrices. IEEE Trans. Inf. Theory, 45:399–431, March 1999.
- [13] David J. C. MacKay and Radford M. Neal. Near Shannon Limit Performance of Low Density Parity Check Codes. Electronics Letters, 32:1645–1646, August 1996.
- [14] Jérémy Nadal and Amer Baghdadi. Parallel and flexible 5g ldpc decoder architecture targeting fpga. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(6):1141– 1151, 2021.
- [15] Vladimir L. Petrovi ´c, Dragomir M. El Mezeni, and Andreja Radoševi ´c. Flexible 5g new radio ldpc encoder optimized for high hardware usage efficiency. Electronics, 10(9), 2021.
- [16] C Rajasekaran and K Raguvaran. Microcontroller based reconfigurable iot node. In IEEE 4th International Conference on Frontiers of Signal Processing, pages 12–16, Poitiers, France, September 2018.
- [17] Thomas J. Richardson and Rüdiger L. Urbanke. Efficient Encoding of Low-Density Parity-Check Codes. IEEE Trans. Inf. Theory, 47:638–656, February 2001.
- [18] S. Narasimha Swamy and Salomon Raju Kota. An empirical study on system level aspects of internet of things (iot). IEEE Access, 8:188082–188134, 2020.
- [19] Chance Tarver, Matthew Tonnemacher, Hao Chen, Jianzhong Zhang, and Joseph R. Cavallaro. Gpu-based, ldpc decoding for 5g and beyond. IEEE Open Journal of Circuits and Systems, 2:278–290, 2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5840f3a2-d528-4ed0-8720-2f043d0e4718
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.