PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artifact removal from EEG signals recorded in non-restricted environmentArtifact removal from EEG signals recorded in non-restricted environment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electroencephalography (EEG) signals are always accompanied by endogenous and exogenous artifacts. Research carried out in the past few years focused on EEG artifact removal considered EEG signals recorded in a restricted lab environment. Considering the importance of EEG in daily life activities, no definitive approach is presented in removing blink artifacts from non-restricted EEG recordings. In this paper, a new supervised artifact removal method is proposed that classifies EEG chunks having eye movements and then utilizes independent component analysis and discrete wavelet transform to eliminate the ocular artifacts. The EEG data is acquired from 29 subjects in a non-restricted environment where the subject has to watch videos while walking and giving gestures and facial expressions. Thirteen morphological features are extracted from the recorded EEG signals to classify chunks with eye movements. The EEG chunks with eye movements are further processed to remove noise without distorting the morphology of signals. The proposed method is tested for eye movements and shows an improved performance in terms of correlation, mutual information, phase difference, and computational time over unsupervised modified multi-scale sample entropy and kurtosis, and wavelet enhanced independent component analysis based approaches. Moreover, the computed values of statistical parameters including sensitivity and specificity show the robustness of the proposed scheme.
Twórcy
autor
  • Department of Computer Engineering, University of Engineering and Technology Taxila, Pakistan
autor
  • Department of Computer Engineering, University of Engineering and Technology Taxila, Pakistan
  • Department of Computer Engineering, University of Engineering and Technology Taxila, Pakistan
Bibliografia
  • [1] Casson Alexander J, Mohammed Abdulaal, Meera Dulabh, Siddharth Kohli, Sammy Krachunov, and Eleanor Trimble. Electroencephalogram. In Seamless healthcare monitoring, pp. 45-81. Springer, Cham, 2018.
  • [2] Minguillon J, Angel Lopez-Gordo M, Pelayo F. Trends in EEGBCI for daily-life: Requirements for artifact removal. Biomed Signal Process Control 2017;31:407–18.
  • [3] Urigüen JA, Garcia-Zapirain B. EEG artifact removal—state-ofthe-art and guidelines. J Neural Eng 2015;12(3) 031001.
  • [4] Jiang X, Bian G-B, Tian Z. Removal of artifacts from EEG signals: a review. Sensors 2019;19(5):987.
  • [5] Chen X, Liu A, Qiang Chen Yu, Liu LZ, McKeown MJ. Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics. Comput Biol Med 2017;88:1–10.
  • [6] Sweeney KT, Ward TE, McLoone SF. Artifact removal in physiological signals—Practices and possibilities. IEEE Trans Inf Technol Biomed 2012;16(3):488–500.
  • [7] Flumeri D, Gianluca PA, Borghini G, Colosimo A, Babiloni F. A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2016. p. 3187–90.
  • [8] Makeig S, Westerfield M, Analysis and visualization of singletrial event-related potentials, Hum Brain Mapp 14: 166-185.
  • [9] Daly I, Nicolaou N, Nasuto SJ, Warwick K. Automated artifact removal from the electroencephalogram: a comparative study. Clin EEG Neurosci 2013;44(4):291–306.
  • [10] Fitzgibbon SP, Powers DMW, Pope KJ, Clark CR. Removal of EEG noise and artifact using blind source separation. J Clin Neurophysiol 2007;24(3):232–43.
  • [11] Issa MF, Tuboly G, Kozmann G, Juhasz Z. Automatic ECG artefact removal from EEG signals. Measure Sci Rev 2019;19 (3):101–8.
  • [12] Rakibul MM, Ng S-C, Zilany MSA, Paramesran R. Artifactsmatched blind source separation and wavelet transform for multichannel EEG denoising. Biomed Signal Process Control 2015;22:111–8.
  • [13] Safieddine D, Kachenoura A, Albera L, Birot G, Karfoul A, Pasnicu A, et al. Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP J Adv Signal Process 2012;2012(1):127.
  • [14] Kafiul IM, Rastegarnia A, Yang Z. A wavelet-based artifact reduction from scalp EEG for epileptic seizure detection. IEEE J Biomed Health Inf 2015;20(5):1321–32.
  • [15] Chen Yan, Qinglin Zhao, Bin Hu, Jianpeng Li, Hua Jiang, Wenhua Lin, et al. A method of removing ocular artifacts from EEG using discrete wavelet transform and Kalman filtering. In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1485-1492. IEEE, 2016.
  • [16] Calcagno S, La Foresta F, Versaci M. Independent component analysis and discrete wavelet transform for artifact removal in biomedical signal processing. Am J Appl Sci 2014;11(1):57.
  • [17] Wang G, Teng C, Li K, Zhang Z, Yan X. The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J Biomed Health Inf 2015;20(5):1301–8.
  • [18] Soomro Mumtaz Hussain, Nasreen Badruddin, Mohd Zuki Y, Munsif Ali Jatoi, Automatic eye-blink artifact removal method based on EMD-CCA. In 2013 ICME International Conference on Complex Medical Engineering, pp. 186-190. IEEE, 2013.
  • [19] Issa MF, Juhasz Z. Improved EOG artifact removal using wavelet enhanced independent component analysis. Brain Sci 2019;9(12):355.
  • [20] Lee S, McKeown MJ, Jane Wang Z, Chen X. Removal of highvoltage brain stimulation artifacts from simultaneous EEG recordings. IEEE Trans Biomed Eng 2018;66(1):50–60.
  • [21] Shahbakhti M, Maugeon M, Beiramvand M, Marozas V. Low complexity automatic stationary wavelet transform for elimination of eye blinks from EEG. Brain Sci 2019;9(12):352.
  • [22] Radüntz T, Scouten J, Hochmuth O, Meffert B. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features. J Neural Eng 2017;14(4) 046004.
  • [23] Sai CY, Mokhtar N, Arof H, Cumming P, Iwahashi M. Automated classification and removal of EEG artifacts with SVM and wavelet-ICA. IEEE J Biomed Health Inf 2017;22(3):664–70.
  • [24] Mohammadpour M, Rahmani V. In: A Hidden Markov Modelbased approach to removing EEG artifact. IEEE; 2017. p. 46–9.
  • [25] Tamburro Gabriella, Patrique Fiedler, David Stone, Jens Haueisen, Silvia Comani, A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings. PeerJ 6 (2018): e4380.
  • [26] Lin Chin-Teng, Che-Jui Chang, Bor-Shyh Lin, Shao-Hang Hung, Chih-Feng Chao, I-Jan Wang, A real-time wireless brain–computer interface system for drowsiness detection. IEEE Trans Biomed Circuits Syst, 4(4) (2010): 214-222.
  • [27] Anwar Syed Muhammad, Muhammad Majid, Muhammad Ehatishamul Haq, Bilal Khan. Mapping brain activity using wearable EEG sensors for mobile applications. In Proceedings of the 2nd International Conference on Multimedia and Human-Computer Interaction, Prague, Czech Republic, vol. 1415. 2014.
  • [28] Raheel Aasim, Muhammad Majid, Syed Muhammad Anwar. Facial expression recognition based on electroencephalography. In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1-5. IEEE, 2019.
  • [29] Qayyum Huma, Muhammad Majid, Ehatisham ul Haq, Syed Muhammad Anwar. Generation of personalized video summaries by detecting viewer’s emotion using electroencephalography. J Vis Commun Image Represent 65 (2019): 102672.
  • [30] Asif Anum, Majid Muhammad, Anwar Syed Muhammad. Human stress classification using EEG signals in response to music tracks. Comput Biol Med 2019;107:182–96.
  • [31] Hyvarinen Aapo. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999;10(3):626–34.
  • [32] Mahajan Ruhi, Morshed Bashir I. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and wavelet-ICA. IEEE J Biomed Health Inf 2014;19(1):158–65.
  • [33] Ghandeharion Hosna, Erfanian Abbas. A fully automatic ocular artifact suppression from EEG data using higher order statistics: Improved performance by wavelet analysis. Med Eng Phys 2010;32(7):720–9.
  • [34] Donoho David L, Johnstone Jain M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994;81(3):425–55.
  • [35] Raghavendra BS, Narayana Dutt D. Wavelet enhanced CCA for minimization of ocular and muscle artifacts in EEG. World Acad Sci Eng Technol 2011;57(6):1027–32.
  • [36] Mamun Md, Al-Kadi Mahmoud, Marufuzzaman Mohd. Effectiveness of wavelet denoising on electroencephalogram signals. J Appl Res Technol 2013;11(1):156–60.
  • [37] Castellanos Nazareth P, Makarov Valeri A. Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J Neurosci Methods 2006;158(2):300–12.
  • [38] Thatcher Robert W. Coherence, phase differences, phase shift, and phase lock in EEG/ERP analyses. Dev Neuropsychol 2012;37(6):476–96.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-583d6cf5-3bdb-442d-bf23-d717b8e0d2a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.