PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the nonlinear free and forced vibration analysis of multi-scale hybrid nano-composites (multi-scale HNC) annular plate (multi-scale HNCAP) under hygro-thermal environment and subjected to mechanical loading is presented. The material of matrix composite is enhanced by either carbon fibers (CF) or carbon nanotubes (CNTs) at the small or macro-scale. The multi-scale laminated annular plate’s displacement fields are determined using third-order shear deformation theory (third-order SDT) and nonlinearity of vibration behavior of this structure is taken into account considering Von Karman nonlinear shell model. Energy method known as Hamilton principle is applied to create the motion equations governed to the multi-scale HNCAP, while they are solved using generalized differential quadrature method (GDQM) as well as multiple scale method. The results created from finite-element simulation illustrates a close agreement with the semi-numerical method results. Ultimately, the research’s outcomes reveal that increasing value of the moisture change (ΔH) and orientation angle parameter (θ), and the rigidity of the boundary conditions lead to an increase in the structure’s frequency. Besides, whenever the values of the nonlinear parameter (γ) are positive or negative, the dynamic behavior of the plate tends to have hardening or softening behaviors, respectively. Also, there are not any effects from γ parameter on the maximum amplitudes of resonant vibration of the multi-scale HNCAP. Last but not least, by decreasing the structure’s flexibility, the plate can be susceptible to have unstable responses.
Rocznik
Strony
51--75
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
  • School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
autor
  • Faculty of Civil Engineering, K. N. Toosi University of Technology, Valiasr Street, P.O. Box 15875 4416, Tehran, Iran
  • Faculty of Engineering, Mahallat Institute of Higher Education, Mahallat, Iran
  • Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
  • Faculty of Electrical–Electronic Engineering, Duy Tan University, Da Nang 550000, Vietnam
  • Department of Mechanics, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
Bibliografia
  • [1] Chakrapani SK, Barnard DJ, Dayal V. Nonlinear forced vibra-tion of carbon fiber/epoxy prepreg composite beams: theory and experiment. Compos B Eng. 2016;91:513–21.
  • [2] Emam S, Eltaher M. Buckling and postbuckling of compos-ite beams in hygrothermal environments. Compos Struct. 2016;152:665–75.
  • [3] Maghamikia S, Jam J. Buckling analysis of circular and annular composite plates reinforced with carbon nanotubes using FEM. J Mech Sci Technol. 2011;25:2805–10.
  • [4] Tahouneh V, Yas M. Influence of equivalent continuum model based on the Eshelby-Mori-Tanaka scheme on the vibrational response of elastically supported thick continuously graded carbon nanotube-reinforced annular plates. Polym Compos. 2014;35:1644–61.
  • [5] Tahouneh V, Eskandari-Jam J. A semi-analytical solution for 3-D dynamic analysis of thick continuously graded carbon nanotube-reinforced annular plates resting on a two-parameter elastic foun-dation. Mech Adv Compos Struct. 2014;1:113–30.
  • [6] Ansari R, Torabi J, Shojaei MF. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos B Eng. 2017;109:197–213.
  • [7] Keleshteri M, Asadi H, Aghdam M. Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation. Thin Walled Struct. 2019;135:453–62.
  • [8] Ansari R, Torabi J. Nonlinear free and forced vibration analysis of FG-CNTRC annular sector plates. Polym Compos. 2019;40:E1364–77.
  • [9] Keleshteri M, Asadi H, Wang Q. Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method. Comput Methods Appl Mech Eng. 2017;325:689–710.
  • [10] Mohammadzadeh-Keleshteri M, Asadi H, Aghdam M. Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers. Compos Struct. 2017;171:100–12.
  • [11] Keleshteri M, Asadi H, Wang Q. Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation. Thin Walled Struct. 2017;120:203–14.
  • [12] Torabi J, Ansari R. Nonlinear free vibration analysis of thermally induced FG-CNTRC annular plates: Asymmetric versus axisymmetric study. Comput Methods Appl Mech Eng. 2017;324:327–47.
  • [13] Ansari R, Torabi J, Hasrati E. Axisymmetric nonlinear vibration analysis of sandwich annular plates with FG-CNTRC face sheets based on the higher-order shear deformation plate theory. Aerosp Sci Technol. 2018;77:306–19.
  • [14] Gholami R, Ansari R. Asymmetric nonlinear bending analysis of polymeric composite annular plates reinforced with graphene nanoplatelets. Int J Multiscale Comput Eng. 2019;17. https://doi.org/10.1615/IntJMultCompEng.2019029156.
  • [15] Borjalilou V, Asghari M. Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory. Int J Appl Mech. 2019;11:1950007.
  • [16] Shaterzadeh A, Foroutan K, Ahmadi H. Nonlinear static and dynamic thermal buckling analysis of spiral stiffened functionally graded cylindrical shells with elastic foundation. Int J Appl Mech. 2019;11:1950005.
  • [17] Li Z, He Y, Zhang B, Lei J, Guo S, Liu D. On the internal resonances of size-dependent clamped–hinged microbeams: Continuum modeling and numerical simulations. Int J Appl Mech. 2019;11:1950022.
  • [18] Truong-Thi T, Vo-Duy T, Ho-Huu V, Nguyen-Thoi T. Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CS-DSG3. Int J Comput Methods. 2020;17:1850133.
  • [19] Karimiasl M, Ebrahimi F, Akgöz B. Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading. Compos Struct. 2019;223:110988.
  • [20] Ebrahimi F, Dabbagh A. Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model. Compos B Eng. 2019;173:106955.
  • [21] Ansari R, Hasrati E, Torabi J. Nonlinear vibration response of higher-order shear deformable FG-CNTRC conical shells. Com-pos Struct. 2019;222:110906.
  • [22] Ebrahimi F, Habibi S. Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nano-composite plate resting on elastic foundations in hygrothermal environments. Mech Adv Mater Struct. 2018;25:425–38.
  • [23] Ebrahimi F, Dabbagh A. On thermo-mechanical vibration analysis of multi-scale hybrid composite beams. J Vib Control. 2019;25:933–45.
  • [24] Ghadiri M, Shafiei N, Safarpour H. Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst Technol. 2017;23:1045–65.
  • [25] Reddy, Junuthula N. A simple higher-order theory for laminated composite plates. 1984;745-752.
  • [26] Al-Furjan M, Safarpour H, Habibi M, Safarpour M, Tounsi A. A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput. 2020:1–18. https://doi.org/10.1007/s00366-020-01088-7.
  • [27] Al-Furjan M, Habibi M, Won Jung D, Sadeghi S, Safarpour H, Tounsi A, et al. A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng Comput. 2020:1–18. https://doi.org/10.1007/s00366-020-01130-8.
  • [28] Shahgholian-Ghahfarokhi D, Safarpour M, Rahimi A. Tor-sional buckling analyses of functionally graded porous nano-composite cylindrical shells reinforced with graphene platelets (GPLs). Mech Based Design Struct Mach. 2019:1–22. https://doi.org/10.1080/15397734.2019.1666723.
  • [29] Guo H, Zhuang X, Rabczuk T. A deep collocation method for the bending analysis of Kirchhoff plate. CMC-Comput Mater Continua. 2019;59:433–56.
  • [30] Bellman R, Casti J. Differential quadrature and longterm integration. J Math Anal Appl. 1971;34:235–8.
  • [31] Bellman R, Kashef B, Casti J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys. 1972;10:40–52.
  • [32] Shu C. Differential quadrature and its application in engineering. Springer Science & Business Media; 2012.
  • [33] Al-Furjan MS, Oyarhossein MA, Habibi M, Safarpour H, Jung DW. Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis. Thin-Walled Structures. 2020;157:107111. https://doi.org/10.1016/j.tws.2020.107111.
  • [34] Al-Furjan M, Habibi M, Safarpour H. Vibration control of a smart shell reinforced by graphene nanoplatelets. Int J Appl Mech. 2020. https://doi.org/10.1142/S1758825120500660.
  • [35] Al-Furjan M, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A. Chaotic simulation of the multi-phase reinforced ther-moelastic disk using GDQM. Eng Comput. 2020:1–24. https://doi.org/10.1007/s00366-020-01144-2.
  • [36] SafarPour H, Mohammadi K, Ghadiri M, Rajabpour A. Influence of various temperature distributions on critical speed and vibrational characteristics of rotating cylindrical microshells with modified lengthscale parameter. Eur Phys J Plus. 2017;132:281.
  • [37] Al-Furjan MS, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A. Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM. Composite Structures. 2020;252:112737. https://doi.org/10.1016/j.compstruct.2020.112737.
  • [38] Al-Furjan MS, Habibi M, won Jung D, Chen G, Safarpour M, Safarpour H. Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel. Eur J Mech A Solids.2020;85:104091. https://doi.org/10.1016/j.euromechsol.2020.104091.
  • [39] Safarpour M, Rahimi A, NoormohammadiArani O, Rabczuk T. Frequency characteristics of multiscale hybrid nanocomposite annular plate based on a Halpin-Tsai homogenization model with the aid of GDQM. Appl Sci. 2020;10:1412.
  • [40] Habibi M, Ghazanfari A, Assempour A, Naghdabadi R, Hashemi R. Determination of forming limit diagram using two modified finite element models. Mech Eng. 2017;48:141–4.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-583900c5-cd86-4db6-8d6d-d14ed7fa4836
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.