PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental efficiency in the context of achieving EU climate targets

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Efetywność środowiskowa w kontekście realizacji celów klimatycznych UE
Języki publikacji
EN
Abstrakty
EN
The European Union is actively involved in the fight against climate change by setting national and international goals in the field of environmental protection. An important and globally monitored indicator is Net greenhouse gas emissions (GHG), the reduction of which was enshrined in the Europe 2020 Strategy and is subsequently the subject of the 2030 Agenda. The contribution focuses on the evaluation of the fulfillment of the main climate goal set in the Strategy 2020 and on the analysis of the environmental efficiency of member countries in reducing Net greenhouse gas emissions (GHG). The method of distance from a fictitious object was used to evaluate the set climate target, and environmental efficiency was measured in the period 2010-2020 using the DEA method. The chosen methods made it possible to reach the conclusion that up to five countries, such as Ireland, Luxembourg, Cyprus, Spain and Austria, failed to meet the set climate goal by 2020. By means of the DEA method, significant differences in environmental efficiency were detected between countries that joined the EU before and after 2004. Lower environmental efficiency was achieved to a greater extent by countries that joined the EU last. The presented study assumed that countries that did not reach the set goal have low environmental efficiency. However, this turned out to be a false assumption and countries like Ireland and Luxembourg were included among the states with the highest environmental efficiency. The results may indicate that the climate goals at the national level were set too ambitiously in these countries.
PL
Unia Europejska aktywnie uczestniczy w walce ze zmianami klimatycznymi, ustanawiając krajowe i międzynarodowe cele w dziedzinie ochrony środowiska. Ważnym i globalnie monitorowanym wskaźnikiem jest emisja gazów cieplarnianych netto (GHG), których redukcja została uwzględniona w Strategii Europa 2020 i jest przedmiotem Agendy 2030. Niniejszy artykuł skupia się na ocenie realizacji głównego celu klimatycznego ustanowionego w Strategii 2020 oraz analizie efektywności środowiskowej państw członkowskich w redukcji emisji gazów cieplarnianych netto (GHG). Do oceny wyznaczonego celu klimatycznego zastosowano metodę odległości od obiektu fikcyjnego, a efektywność środowiskową mierzono w okresie 2010-2020 za pomocą metody DEA. Wybrane metody pozwoliły dojść do wniosku, że do 2020 roku pięć krajów, takich jak Irlandia, Luksemburg, Cypr, Hiszpania i Austria, nie osiągnęło wyznaczonego celu klimatycznego. Za pomocą metody DEA wykryto istotne różnice w efektywności środowiskowej między krajami, które przystąpiły do UE przed i po 2004 roku. Niższą efektywność środowiskową osiągnięto w większym stopniu przez kraje, które przystąpiły do UE w ostatnim przedziale czasowym. Przedstawione badanie założyło, że kraje, które nie osiągnęły wyznaczonego celu, mają niską efektywność środowiskową. Jednak okazało się, że jest to fałszywe założenie, a kraje takie jak Irlandia i Luksemburg zostały uwzględnione wśród państw o najwyższej efektywności środowiskowej. Wyniki mogą wskazywać, że cele klimatyczne na poziomie krajowym zostały ustawione zbyt ambitnie w tych krajach.
Rocznik
Strony
394--412
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
  • Technical University of Kosice, Faculty of Economics, Slovakia
autor
  • Technical University of Kosice, Faculty of Economics, Slovakia
  • Technical University of Kosice, Faculty of Mining, Slovakia
  • Technical University of Kosice, Faculty of Mining, Slovakia
Bibliografia
  • 1. Ahmad, M., Ahmed, Z., Gavurova, B. and Oláh, J., (2022). Financial risk, renewable energy technology budgets, and environmental sustainability: is going green possible? Frontiers in Environmental Science, 10, 120751.
  • 2. Apergis, N., Garćıa, C., (2019). Environmentalism in the EU-28 context: the impact of governance quality on environmental energy efficiency. Environmental Science and Pollution Research, 26(36), 37012-37025.
  • 3. Becker, W., Norlén, H., Dijkstra, L. and Athanasoglou, S., (2020). Wrapping up the Europe 2020 strategy: A multidimensional indicator analysis. Environmental and Sustainability Indicators, 8, 00075.
  • 4. Beltrán-Esteve, M., Picazo-Tadeo, A. J., (2017). Assessing environmental performance in the European Union: Eco-innovation versus catching-up. Energy Policy, 104, 240-252.
  • 5. Beltrán-Esteve, M., Giménez, V. and Picazo-Tadeo, A. J., (2019). Environmental productivity in the European Union: A global Luenberger-metafrontier approach. Science of the total environment, 692, 136-146.
  • 6. Bovenberg, L., (2023). Eco-efficiency, Institutions, and Political Orientation: A case study of the European Union, Umeå University.
  • 7. Capros, P., Paroussos, L., Fragkos, P., Tsani, S., Boitier, B., Wagner, F., Busch, S., Resch, G., Blesl, M. and Bollen, J., (2014). Description of models and scenarios used to assess European decarbonisation pathways. Energy Strategy Reviews, 2(3), 220-230.
  • 8. Csikosova, A., Culkova, K., Janoskova, M. and Mokrisova, V., (2021). Evaluation of Environmental Taxes Influence to the Business Environment. Montenegrin Journal of Economics, 17(3), 31-40.
  • 9. Czyżewski, B., Matuszczak, A., Polcyn, J., Smędzik-Ambroży, K. and Staniszewski, J., (2020). Deadweight loss in environmental policy: The case of the European Union member states. Journal of Cleaner Production, 260, 21064.
  • 10. Dat, P. T., Hung, H. T., (2023). Determinants of Sustainable Development: A Case Study in Vietnam. Montenegrin Journal of Economics, 19(2), 97-107.
  • 11. Dat, P. T., Le, T. T. H., (2023). Factors Affecting the Green Economy Based on the Attraction of Foreign Direct Investment in the Context of Climate Change, Vietnam. Montenegrin Journal of Economics, 19(1), 31-41.
  • 12. De Pascale, G., Sardaro, R., Faccilongo, N. and Contò, F., (2020). What is the influence of FDI and international people flows on environment and growth in OECD countries? A panel study. Environmental Impact Assessment Review, 84, 106434.
  • 13. Dirik, C., Şahin, S. and Engin, P., (2018). Environmental efficiency evaluation of Turkish cement industry: an application of data envelopment analysis. Energy Efficiency, 12(8), 2079-2098.
  • 14. Duman, Y. S., Kasman, A., (2018). Environmental technical efficiency in EU member and candidate countries: A parametric hyperbolic distance function approach. Energy, 147, 297-307.
  • 15. European Commission. Directorate General for Employment, Social Affairs and Inclusion., (2019). Assessment of the Europe 2020 strategy: joint report of the Employment Committee (EMCO) and Social Protection Committee (SPC). Publications Office of the European Union.
  • 16. European Commission., (2010). Communication from the commission Europe 2020: A strategy for Smart, sustainable and inclusive growth. Working paper, COM (2010) 2020.
  • 17. Fedajev, A., Stanujkic, D., Karabašević, D., Brauers, W. K. M. and Zavadskas, E. K., (2020). Assessment of progress towards “Europe 2020” strategy targets by using the MULTIMOORA method and the Shannon Entropy Index. Journal of Cleaner Production, 244, 118895.
  • 18. Gavurova, B., Schonfeld, J., Bilan, Y. and Dudas, T., (2022). Study of the Differences in the Perception of the Use of the Principles of Corporate Social Responsibility in Micro, Small and Medium-Sized Enterprises in the V4 Countries. Journal of Competitiveness, 14(2), 23-40.
  • 19. Gontkovičová, B., Duľová Spišáková, E., (2023). Climate and energy targets under Europe 2020 strategy and their fulfillment by member states. Frontiers in Environmental Science, 11, 1-15.
  • 20. Goto, M., Otsuka, A. and Sueyoshi, T., (2014). DEA (Data Envelopment Analysis) assessment of operational and environmental efficiencies on Japanese regional industries. Energy, 66, 535-549.
  • 21. Győri, T., (2023). Categorisation of regions in the European Union based on smart and inclusive growth indicators for the Europe 2020 strategy. Regional Statistics, 13(2), 299-323.
  • 22. Halkos, G., Petrou, K. N., (2019). Assessing 28 EU member states’ environmental efficiency in national waste generation with DEA. Journal of Cleaner Production, 208, 509-521.
  • 23. Hermoso-Orzáez, M. J., García-Alguacil, M., Terrados-Cepeda, J. and Brito, P., (2020). Measurement of environmental efficiency in the countries of the European Union with the enhanced data envelopment analysis method (DEA) during the period 2005–2012. Environmental Science and Pollution Research, 27(13), 15691-15715.
  • 24. Höglund-Isaksson, L., Winiwarter, W., Purohit, P., Rafaj, P., Schöpp, W. and Klimont, Z., (2012). EU low carbon roadmap 2050: Potentials and costs for mitigation of non-CO2 greenhouse gas emissions. Energy Strategy Reviews, 1(2), 97-108.
  • 25. Huynh, L. T. D., Hoang, H. T., (2023). Technical Efficiency and Total Factor Productivity Changes in Manufacturing Industries: Recent Advancements in Stochastic Frontier Model Approach. Montenegrin Journal of Economics, 19(1), 57-67.
  • 26. Charles, V., Tsolas, I. E. and Gherman, T., (2017). Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector. Annals of Operations Research, 269(1-2), 81-102
  • 27. Chen, L., Wu, F., Wang, Y. and Li, M., (2019). Analysis of the environmental efficiency in China based on the DEA cross‐efficiency approach under different policy objectives. Expert Systems, 37(3), e12461.
  • 28. Iram, R., Zhang, J., Erdogan, S., Abbas, Q. and Mohsin, M., (2019). Economics of energy and environmental efficiency: evidence from OECD countries. Environmental Science and Pollution Research, 27(4), 3858-3870.
  • 29. Jägemann, C., Fürsch, M., Hagspiel, S. and Nagl, S., (2013). Decarbonizing Europe’s power sector by 2050 - Analyzing the economic implications of alternative decarbonization pathways. Energy Economics, 40, 622-636.
  • 30. Kiani Mavi, R., Saen, R. F. and Goh, M., (2019). Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach. Technological Forecasting and Social Change, 144, 553-562.
  • 31. Kryk, B., Guzowska, M. K., (2021). Implementation of Climate/Energy Targets of the Europe 2020 Strategy by the EU Member States. Energies, 14(9), 2711.
  • 32. Kumar, A., Singh, P., Raizada, P. and Hussain, C. M., (2022). Impact of COVID-19 on greenhouse gases emissions: A critical review. Science of The Total Environment, 806, 150349.
  • 33. Lacko, R., Hajduová, Z., (2018). Determinants of Environmental Efficiency of the EU Countries Using Two-Step DEA Approach. Sustainability, 10(10), 3525.
  • 34. Li, X.-N., Feng, Y., Wu, P.-Y. and Chiu, Y.-H., (2021). An Analysis of Environmental Efficiency and Environmental Pollution Treatment Efficiency in China’s Industrial Sector. Sustainability, 13(5), 2579.
  • 35. Liobikienė, G., Butkus, M., (2017). The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Renewable Energy, 106, 298-309.
  • 36. Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S. ... and Schellnhuber, H. J., (2020). COVID-19 causes record decline in global CO2 emissions. arXiv preprint arXiv:2004.13614.
  • 37. Lotfi, F., Ebrahimnejad, A., Vaez-Ghasemi, M. and Moghaddas, Z., (2020). Data Envelopment Analysis with R. Studies in Fuzziness and Soft Computing. Springer.
  • 38. Luciani, N., van der Lubbe, J. H. L., Verdegaal-Warmerdam, S. J. A., Postma, O., Nikogosian, I. K., Davies, G. R. and Koornneef, J. M., (2022). Carbon and oxygen isotope analysis of CO2 trapped in silicate minerals. Chemical Geology, 602, 120872.
  • 39. Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A. and Khoshnoudi, M., (2017). A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renewable and Sustainable Energy Reviews, 70, 1298-1322.
  • 40. Markandya, A., González-Eguino, M., Criqui, P. and Mima, S., (2014). Low climate stabilisation under diverse growth and convergence scenarios. Energy Policy, 64, 288-301.
  • 41. Matsumoto, K., Makridou, G. and Doumpos, M., (2020). Evaluating environmental performance using data envelopment analysis: The case of European countries. Journal of Cleaner Production, 272, 122637.
  • 42. Meleddu, M., Pulina, M., (2018). The efficiency of the public intervention on the environment:Evidence based on non-parametric and parametric approaches. Journal of Cleaner Production, 183, 744-759.
  • 43. Mhatre, P., Panchal, R., Singh, A. and Bibyan, S., (2021). A systematic literature review on the circular economy initiatives in the European Union. Sustainable Production and Consumption, 26, 187-202.
  • 44. Moreno, B., García-Álvarez, M. T., (2018). Measuring the progress towards a resource-efficient European Union under the Europe 2020 strategy. Journal of Cleaner Production, 170, 991-1005.
  • 45. Moutinho, V., Madaleno, M. and Robaina, M., (2017). The economic and environmental efficiency assessment in EU cross-country: Evidence from DEA and quantile regression approach. Ecological Indicators, 78, 85-97.
  • 46. Naterer, A., Žižek, A. and Lavrič, M., (2018). The quality of integrated urban strategies in light of the Europe 2020 strategy: The case of Slovenia. Cities, 72, 369-378.
  • 47. Neves, S. A., Marques, A. C. and Patrício, M., (2020). Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution? Economic Analysis and Policy, 68, 114-125.
  • 48. Park, Y. S., Lim, S. H., Egilmez, G. and Szmerekovsky, J., (2018). Environmental efficiency assessment of U.S. transport sector: A slack-based data envelopment analysis approach. Transportation Research Part D: Transport and Environment, 61, 152-164.
  • 49. Picazo-Tadeo, A. J., Castillo-Giménez, J. and Beltrán-Esteve, M., (2014). An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union. Ecological Economics, 100, 173-182.
  • 50. Puertas, R., Guaita-Martinez, J. M., Carracedo, P. and Ribeiro-Soriano, D., (2022). Analysis of European environmental policies: Improving decision making through eco-efficiency. Technology in Society, 70, 102053.
  • 51. Roelfsema, M., Elzen, M. den, Höhne, N., Hof, A. F., Braun, N., Fekete, H., Böttcher, H., Brandsma, R. and Larkin, J., (2014). Are major economies on track to achieve their pledges for 2020? An assessment of domestic climate and energy policies. Energy Policy, 67, 781-796.
  • 52. Roth, F., Thum, A. E., (2022). Intangible Capital and Labor Productivity Growth: Panel Evidence for the EU from 1998–2005. Review of Income and Wealth, 59(3), 486-508.
  • 53. Sanz-Díaz, M. T., Velasco-Morente, F., Yñiguez, R. and Díaz-Calleja, E., (2017). An analysis of Spain’s global and environmental efficiency from a European Union perspective. Energy Policy, 104, 183-193.
  • 54. Siddique, A., Shahzad, A., Lawler, J., Mahmoud, K. A., Lee, D. S., Ali, N., Bilal, M. and Rasool, K., (2021). Unprecedented environmental and energy impacts and challenges of COVID-19 pandemic. Environmental Research, 193, 110443.
  • 55. Simionescu, M., Szeles, M. R., Gavurova, B. and Mentel, U., (2021). The impact of quality of governance, renewable energy and foreign direct investment on sustainable development in cee countries. Frontiers in Environmental Science, 9, 765927.
  • 56. Škare, M., Gavurova, B. and Porada-Rochon, M., (2024). Digitalization and carbon footprint: Building a path to a sustainable economic growth. Technological Forecasting and Social Change, 199, 123045.
  • 57. Smith, L. V., Tarui, N. and Yamagata, T., (2021). Assessing the impact of COVID-19 on global fossil fuel consumption and CO2 emissions. Energy Economics, 97, 105170.
  • 58. Spišáková, E. D., Gontkovičová, B., Majerníková, J., Spišák, E. and Pacana, A., (2019). Management of Research and Development Activities in the Context of Strategy Europe 2020. Polish Journal of Management Studies, 19(2), 112-123).
  • 59. Spišáková-Duľová, E., Gontkovičová, B. and Tkáčová, A., (2023) Európska únia a stratégia Európa 2020 v zrkadle priorít a výziev cieľov Agendy 2030. Ostrava: VŠB - Technická univerzita Ostrava.
  • 60. Štreimikienė, D., Samusevych, Y., Bilan, Y., Vysochyna, A. and Sergi, B. S., (2021). Multiplexing efficiency of environmental taxes in ensuring environmental, energy, and economic security. Environmental Science and Pollution Research, 29(5), 7917-7935.
  • 61. Tian, N., Tang, S., Che, A. and Wu, P., (2020). Measuring regional transport sustainability using super-efficiency SBM-DEA with weighting preference. Journal of Cleaner Production, 242, 118474.
  • 62. Veselovská, L., (2023). Sustainability of Corporate Social Responsibility Integration into Business Activities: Changes During the COVID-19 Pandemic. Montenegrin Journal of Economics, 19(4), 89-102.
  • 63. Wegener, M., Amin, G. R., (2019). Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert Systems with Applications, 122, 369–375.
  • 64. Wei, F., Zhang, X., Chu, J., Yang, F. and Yuan, Z., (2021). Energy and environmental efficiency of China’s transportation sectors considering CO2 emission uncertainty. Transportation Research Part D: Transport and Environment, 97,102955.
  • 65. Yang, F., Wang, D., Zhao, L. and Wei, F., (2021). Efficiency evaluation for regional industrial water use and wastewater treatment systems in China: A dynamic interactive network slacks-based measure model. Journal of Environmental Management, 279, 111721.
  • 66. Zhu, Y., Yang, F., Wei, F. and Wang, D., (2022). Measuring environmental efficiency of the EU based on a DEA approach with fixed cost allocation under different decision goals. Expert Systems with Applications, 208, 118183.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58337289-6703-49c9-85f9-f8ac36972480
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.