Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
In process analytical chemistry, mass spectrometry analysis using a soft electron ionization (EI) source has qualitative advantages. However, the relatively small ionization cross-section of soft EI leads to lower sensitivity. To address this issue, a novel method has been developed to enhance the sensitivity of soft EI by utilizing a dual electron repeller and an ionization chamber to form a U-shaped electric field, causing electrons to oscillate within the field and effectively increasing the electron collision cross-sectional area. By combining with an electron lens, the virtual cathode effect at low electron energy can be reduced or even eliminated, thereby improving ionization efficiency. This method has resulted in a significant increase in signal intensity for m/z 18(H2O), with a factor of 4.2 at an electron energy of 25 eV and a factor of 3.75 at 20 eV, compared to the electron receiving mode. Additionally, it reduces the required emission current, which is beneficial for prolonging the life of the filament. The proposed technique is expected to expand the application of soft EI, particularly for rapid online analysis in process analytical chemistry such as catalyst research and chemical reaction process monitoring.
Czasopismo
Rocznik
Tom
Strony
353--367
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
- National Institute of Metrology, 18, Beisanhuandonglu, Chaoyang District, Beijing, 100029, P.R. China
autor
- National Institute of Metrology, 18, Beisanhuandonglu, Chaoyang District, Beijing, 100029, P.R. China
autor
- National Institute of Metrology, 18, Beisanhuandonglu, Chaoyang District, Beijing, 100029, P.R. China
autor
- Fudan University, Department of Chemistry Jiangwan Campus, HuaXue Building A3002, Shanghai, 200433, P.R. China
autor
- National Institute of Metrology, 18, Beisanhuandonglu, Chaoyang District, Beijing, 100029, P.R. China
Bibliografia
- [1] Munson, M. S. B., & Field, F. H. (1966). Chemical ionization mass spectrometry. II. Esters. Journal of the American Society for Mass Spectrometry, 88(19), 4337-4345. https://doi.org/10.1021/ja00971a007
- [2] Berresheim, H., Elste, T., Plass-Dülmer, C., Eisele, F. L., & Tanner, D. J. (2000). Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4. International Journal of Mass Spectrometry, 202(1-3), 91-109. https://doi.org/10.1016/S1387-3806(00)00233-5
- [3] Hearn, J. D., & Smith, G. D. (2004). A chemical ionization mass spectrometry method for the online analysis of organic aerosols. Analytical Chemistry, 76(10), 2820-2826. https://doi.org/10.1021/ac049948s
- [4] St Clair, J. M., McCabe, D. C., Crounse, J. D., Steiner, U., & Wennberg, P. O. (2010). Chemical ionization tandem mass spectrometer for the in situ measurement of methyl hydrogen peroxide. Review of Scientific Instruments, 81(9). https://doi.org/10.1063/1.3480552
- [5] Fenn, J., Mann, M., Meng, C., Wong, S., & Whitehouse, C. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64-71. https://doi.org/10.1126/science.2675315
- [6] Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., & Whitehouse, C. M. (1990). Electrospray ionization - principles and practice. Mass Spectrometry Reviews, 9, 37-70. https://doi.org/10.1002/mas.1280090103
- [7] King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C., & Olah, T. (2000). Mechanistic investigation of ionization suppression in electrospray ionization. Journal of the American Society for Mass Spectrometry, 11(11), 942-950. https://doi.org/10.1016/s1044-0305(00)00163-x
- [8] Smith, R. D., Loo, J. A., Loo, R. R. O., Busman, M., & Udseth, H. R. (1990). Principles and practice of electrospray ionization - mass spectrometry for large polypeptides and proteins. Mass Spectrometry Reviews, 10(5), 359-452. https://doi.org/10.1002/mas.1280100504
- [9] Andrade, F. J., Shelley, J. T., Wetzel, W. C., Webb, M. R., Gamez, G., Ray, S. J., & Hieftje, G. M. (2008). Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Analytical Chemistry, 80(8), 2646-2653. https://doi.org/10.1021/ac800156y
- [10] Andrade, F. J., Shelley, J. T., Wetzel, W. C., Webb, M. R., Gamez, G., Ray, S. J., & Hieftje, G. M. (2008). Atmospheric pressure chemical ionization source. 2. Desorption-ionization for the direct analysis of solid compounds. Analytical Chemistry, 80(8), 2654-2663. https://doi.org/10.1021/ac800210s
- [11] Cai, S., & Syage, J. A. (2006). Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Analytical Chemistry, 78(4), 1191-1199. https://doi.org/10.1021/ac0515834
- [12] Vogel, A. L., Äijälä, M., Brüggemann, M., Ehn, M., Junninen, H., Petäjä, T., Worsnop, D. R., Kulmala, M., Williams, J., & Hoffmann, T. (2013). Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study. Atmospheric Measurement Techniques, 6(2), 431-443. https://doi.org/10.5194/amt-6-431-2013
- [13] Charles, L., Riter, L. S., & Cooks, R. G. (2001). Direct analysis of semivolatile organic compounds in air by atmospheric pressure chemical ionization mass spectrometry. Analytical Chemistry, 73(21), 5061-5065. https://doi.org/10.1021/ac010606l
- [14] Chen, H., Lai, J., Zhou, Y., Huan, Y., Li, J., Xie, Z., Wang, Z., & Luo, M. (2007). Instrumentation and characterization of surface desorption atmospheric pressure chemical ionization mass spectrometry. Chinese Journal of Analytical Chemistry, 35(8), 1233-1240. https://doi.org/10.1016/s1872-2040(07)60079-6
- [15] Takáts, Z., Wiseman, J. M., Gologan, B., & Cooks, R. G. (2004). Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306(5695), 471-473. https://doi.org/10.1126/science.1104404
- [16] Takáts, Z., Wiseman, J. M., & Cooks, R. G. (2005). Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. Journal of Mass Spectrometry, 40(10), 1261-1275. https://doi.org/10.1002/jms.922
- [17] Cooks, R. G., Ouyang, Z., Takáts, Z., & Wiseman, J. M. (2006). Ambient mass spectrometry. Science, 311(5767), 1566-1570. https://doi.org/10.1126/science.1119426
- [18] Zeng, S., Wang, L., Chen, T., Wang, Y., Mo, H., & Qu, H. (2012). Direct analysis in real time mass spectrometry and multivariate data analysis: A novel approach to rapid identification of analytical markers for quality control of traditional Chinese medicine preparation. Analytica Chimica Acta, 733, 38-47. https://doi.org/10.1016/j.aca.2012.04.025
- [19] Gross, J. H. (2014). Direct analysis in real time - a critical review on DART-MS. Analytical and Bioanalytical Chemistry, 406(1), 63-80. https://doi.org/10.1007/s00216-013-7316-0
- [20] Petucci, C., Diffendal, J., Kaufman, D., Mekonnen, B., Terefenko, G., & Musselman, B. (2007). Direct analysis in real time for reaction monitoring in drug discovery. Analytical Chemistry, 79(13), 5064-5070. https://doi.org/10.1021/ac070443m
- [21] Morlock, G. E., & Chernetsova, E. S. (2012). Coupling of planar chromatography with Direct Analysis in Real Time mass spectrometry. Central European Journal of Chemistry, 10(3), 703-710. https://doi.org/10.2478/s11532-012-0025-2
- [22] Wang, Y., Liu, L., Ma, L., & Liu, S. (2014). Identification of saccharides by using direct analysis in real time (DART) mass spectrometry. International Journal of Mass Spectrometry, 357, 51-57. https://doi.org/10.1016/j.ijms.2013.09.008
- [23] Nah, T., Chan, MN., Leone, S. R., & Wilson, K. R. (2013). Real time in situ chemical characterization of submicrometer organic particles using direct analysis in Real Time-Mass spectrometry. Analytical Chemistry, 85(4), 2087-2095. https://doi.org/10.1021/ac302560c
- [24] Na, N., Zhao, M., Zhang, S., Yang, C., & Zhang, X. (2007). Development of a Dielectric Barrier Discharge Ion Source for Ambient Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 18(10), 1859-1862. https://doi.org/10.1016/j.jasms.2007.07.027
- [25] Hiraoka, K., Ninomiya, S., Chen, L. C., Iwama, T., Mandal, M. K., Suzuki, H., Ariyada, O., Furuya, H., & Takekawa, K. (2011). Development of double cylindrical dielectric barrier discharge ion source. Analyst, 136(6), 1210. https://doi.org/10.1039/c0an00621a
- [26] Hiraoka, K., Chen, L. C., Iwama, T., Mandal, M. K., Ninomiya, S., Suzuki, H., Ariyada, O., Furuya, H., & Takekawa, K. (2010). Development of a Remote-from-Plasma dielectric barrier discharge ion source and its application to explosives. Journal of the Mass Spectrometry Society of Japan, 58(6), 215-220. https://doi.org/10.5702/massspec.58.215
- [27] Butcher, D. J. (1999). Vacuum Ultraviolet Radiation for Single-Photoionization Mass Spectrometry: A Review. Microchemical Journal, 62(3), 354-362. https://doi.org/10.1006/MCHJ.1999.1745
- [28] Kang, W. J., Teepe, M., Neyer, A., Baumbach, J. I., Schmidt, H., & Sielemann, S. ( January 2001). In Miniaturized Ion Mobility Spectrometer (μIMS) with UV-Lamp as a Photoionization Source, ISIMS 200110th Int. Conf. on Ion Mobility Spectrometry.
- [29] Syage, J. A., & Evans, M. D. (2001). Photoionization mass spectrometry - A powerful new tool for drug discovery. Spectroscopy Springfield then Eugene then Duluth, 16(11), 14-18.
- [30] Luosujärvi, L. (2010). Miniaturized mass spectrometric ionization techniques for environmental analysis and bioanalysis [Academic Dissertation, University of Helsinki]
- [31] Eschner, M., Gröger, T., Horvath, T. D., Gonin, M., & Zimmermann, R. (2011). Quasi-Simultaneous Acquisition of Hard Electron Ionization and Soft Single-Photon Ionization Mass Spectra during GC/MS Analysis by Rapid Switching between both Ionization Methods: Analytical Concept, Setup, and Application on Diesel Fuel. Analytical Chemistry, 83(10), 3865-3872. https://doi.org/10.1021/ac200356t
- [32] Capozza, G., Segoloni, E., Leonori, F., Volpi, G. G., & Casavecchia, P. (2004). Soft electron impact ionization in crossed molecular beam reactive scattering: The dynamics of the O(3P)+C2H2 reaction. The Journal of Chemical Physics, 120(10), 4557-4560. https://doi.org/10.1063/1.1652013
- [33] Yang, S., Brereton, S. M., Wheeler, M. D., & Ellis, A. M. (2006). Soft or hard ionization of molecules in helium nanodroplets? An electron impact investigation of alcohols and ethers. Physical Chemistry Chemical Physics,7(24), 4082-4088. https://doi.org/10.1039/b511628g
- [34] Amirav, A., Keshet, U., & Danon, A. (2015). Soft Cold EI - approaching molecular ion only with electron ionization. Rapid Communications in Mass Spectrometry, 29(21), 1954-1960. https://doi.org/10.1002/rcm.7305
- [35] Gordin, A., Fialkov, A. B., & Amirav, A. (2008). Classical electron ionization mass spectra in gas chromatography/mass spectrometry with supersonic molecular beams. Rapid Communications in Mass Spectrometry, 22(17), 2660-2666. https://doi.org/10.1002/rcm.3654
- [36] Alon, T., & Amirav, A. (2015). How enhanced molecular ions in Cold EI improve compound identification by the NIST library. Rapid Communications in Mass Spectrometry, 29(23), 2287-2292. https://doi.org/10.1002/rcm.7392
- [37] Khare, P., Marcotte, A., Sheu, R., Ditto, J., & Gentner, D. R. (2017, December). Next generation offline approaches to trace organic compound speciation: Approaching comprehensive speciation with soft ionization and very high resolution tandem mass spectrometry. American Geophysical Union.
- [38] Ehrhardt, H., Jung, K., Knoth, G., & Schlemmer, P. (1986). Differential cross sections of direct single electron impact ionization. Zeitschrift für Physik, 1(1), 3-32. https://doi.org/10.1007/bf01384654
- [39] Straub, H. C., Renault, P., Lindsay, B. G., Smith, K. A., & Stebbings, R. F. (1996). Absolute partial cross sections for electron-impact ionization of H2, N2, and O2 from threshold to 1000 eV. Physical Review A, 54(3), 2146-2153. https://doi.org/10.1103/PhysRevA.54.2146
- [40] Straub, H. C., Renault, P., Lindsay, B. G., Smith, K. A., & Stebbings, R. F. (1995). Absolute partial and total cross sections for electron-impact ionization of argon from threshold to 1000 eV. Physical Review A, 52, 1115-1124. https://doi.org/10.1103/PhysRevA.52.1115
- [41] Lindsay, B. G., Merrill, R. L., Straub, H. C., Smith, K. A., & Stebbings, R. F. (1998). Absolute differential and integral cross sections for charge transfer of keV O+ with N2. Physical Review A, 57, 331. https://doi.org/10.1103/PhysRevA.57.331
- [42] Deutsch, H., Becker, K., Matt, S., & Märk, T. D. (2000). Theoretical determination of absolute electron-impact ionization cross sections of molecules. International Journal of Mass Spectrometry, 197(1), 37-69. https://doi.org/10.1016/S1387-3806(99)00257-2
- [43] Ye, M. Y., & Takamura, S. (2000). Effect of space-charge limited emission on measurements of plasma potential using emissive probes. Physics of Plasmas, 7, 3457-3463. https://doi.org/10.1063/1.874210
- [44] Tierno, S. P., Donoso, J. M., Domenech-Garret, J. L., & Conde, L. (2016). Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas. Physics of Plasmas, 23, 013503. https://doi.org/10.1063/1.4939042
- [45] Takamura, S., Ohno, N., Ye, M. Y., & Kuwabara, T. (2004). Space-charge limited current from plasma-facing material surface. Contributions to Plasma Physics, 44, 126-137. https://doi.org/10.1002/ctpp.200410017
- [46] Marek, A., Jílek, M., Picková, I., Kudrna, P., Tichý, M., Schrittwieser, R., & Ionita, C. (2008). Emissive probe diagnostics in low-temperature plasma - effect of space charge and variations of electron saturation current. Contributions to Plasma Physics, 48, 491-496. https://doi.org/10.1002/ctpp.200810079
- [47] Intrator, T., Cho, M. H., Wang, E. Y., Hershkowitz, N., Diebold, D., & Dekock, J. (1988). The virtual cathode as a transient double sheath. Journal of Applied Physics, 64, 2927-2933. https://doi.org/10.1063/1.341552
- [48] Li, S.-h., & Li, J.-q. (2021). Studies of virtual cathode characteristics near thermionic emission cathodes in a vacuum. Vacuum, 192, 110496. https://doi.org/10.1016/j.vacuum.2021.110496
- [49] Huang, Z. J., Jiang, Y., Yue, J. R., Gong X.-Yun, Liu M. Y., Fang X. (2018). Design and Test for On-Line Rapid Process Mass Spectrometer. Journal of Chinese Mass Spectrometry Society, 39(4), 399-406. https://doi.org/10.7538/zpxb.2017.0149
Uwagi
This work is supported by the National Key R&D Program of China (No. 2021YFF0600202, 2016YFF0102603, 2017YFF0206204, and 2018YFF0212503).
Identyfikator YADDA
bwmeta1.element.baztech-582b2cd2-e01d-488e-bee6-7f51d8f6cb29