PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Harvesting mechanical vibrations energy using nonlinear electromagnetic minigenerators - a survey of concepts and problems

Autorzy
Treść / Zawartość
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (10-11.04.2017 ; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
The state of knowledge in the field of conversion of energy of mechanical vibrations into electrical energy using nonlinear electromagnetic generators is presented. The principle of operation of the considered converters is based on the Faraday law. The electromotive force is induced by the relative movement of the coil or permanent magnets under impact of externally applied vibrations. In order to diminish the disadvantages of conventional generators, namely the narrow frequency bandwidth, in recent years the nonlinear systems were introduced that exhibit the nonlinear resonance phenomenon. Broadening the frequency bandwidth, in which the power generated by the system is relatively high, is realized via introduction of nonlinear force into system kinematics. Designing such systems becomes a big challenge. Based on thorough survey of recent publications as well as on own expertise in the field, the work compares a few concepts of nonlinear electromechanical minigenerators in term of their functional characteristics and design problems. Sample calculations of frequency characteristics using time- and frequency-domain models are presented.
Rocznik
Tom
Strony
347--358
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Opole University of Technology
autor
  • Opole University of Technology
Bibliografia
  • [1] Mitcheson P.D., Yeatman E.M., Rao G.K., Holmes A.S., Green T.C., Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices, Proc. IEEE, vol. 96, no. 9, pp. 1457-1486, Sep. 2008.
  • [2] Beeby S.P., Tudor M.J., White N.M., Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol., vol. 17, no. 12, pp. R175-R195, Dec. 2006.
  • [3] Beeby S.P., Torah R.N., Tudor M.J., Glynne-Jones P., O’Donnell T., Saha C.R., Roy S., A micro electromagnetic generator for vibration energy harvesting, J. Micromechanics Microengineering, vol. 17, no. 7, pp. 1257-1265, Jul. 2007.
  • [4] Jagieła M., Kulik M., Considerations on frequency characteristics of an electromechanical vibration energy harvesting converter with nonlinear parametric resonance, Int. J. Appl. Electromagn. Mech., vol. 53, no. 1, pp. 107-120, Jan. 2017.
  • [5] Podder P., Amann A., Roy S., Combined Effect of Bistability and Mechanical Impact on the Performance of a Nonlinear Electromagnetic Vibration Energy Harvester, IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 727-739, Apr. 2016.
  • [6] Boisseau S., Despesse G., Seddik B.A., Nonlinear H-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters, J. Appl. Mech. Asme, vol. 80, no. 6, p. 61013,2013.
  • [7] Elvin N., Erturk A., Advances in Energy Harvesting Methods, ISBN 978-1-4614-5704-6. New York, NY: Springer New York, 2013.
  • [8] Williams C.B., Shearwood C., Harradine M.A., Mellor P.H., Birch T.S., Yates R.B., Development of an electromagnetic micro-generator, IEE Proc. - Circuits, Devices Syst., vol. 148, no. 6, p. 337, 2001.
  • [9] Dallago E., Marchesi M., Venchi G., Analytical Model of a Vibrating Electromagnetic Harvester Considering Nonlinear Effects, IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1989-1997, Aug. 2010.
  • [10] Sardini E., Serpelloni M., An efficient electromagnetic power harvesting device for low-frequency applications, Sensors Actuators A Phys., vol. 172, no. 2, pp. 475-482, Dec. 2011.
  • [11] Mallick D., Amann A., Roy S., Analysis of Nonlinear Spring Arm for Improved Performance of Vibrational Energy Harvesting Devices, J. Phys. Conf. Ser., vol. 476, no. 1, p. 12088, Dec. 2013.
  • [12] Cottone F., Basset P., Vocca H., Gammaitoni L., Electromagnetic Buckled Beam Oscillator for Enhanced Vibration Energy Harvesting, in 2012 IEEE International Conference on Green Computing and Communications, 2012, pp. 624-627.
  • [13] Ab Rahman M.F., Kok S.L., Ali N.M., Hamzah R.A., Aziz K.A.A., Hybrid vibration energy harvester based on piezoelectric and electromagnetic transduction mechanism, in 2013 IEEE Conference on Clean Energy and Technology (CEAT), 2013, pp. 243-247.
  • [14] Podder P., Mallick D., Roy S., Bandwidth widening in nonlinear electromagnetic vibrational generator by combined effect of bistability and stretching, J. Phys. Conf. Ser., vol. 557, no. 1, p. 12039, Nov. 2014.
  • [15] Podder P., Amann A., Roy S., A bistable electromagnetic micro-power generator using FR4-based folded arm cantilever, Sensors Actuators A Phys., vol. 227, pp. 39-47, May 2015.
  • [16] Sato T., Igarashi H., A New Wideband Electromagnetic Vibration Energy Harvester with Chaotic Oscillation, J. Phys. Conf. Ser., vol. 476, no. 1, p. 12129, Dec. 2013.
  • [17] Sato T., Igarashi H., A chaotic vibration energy harvester using magnetic material, Smart Mater. Struct., vol. 24, no. 2, p. 25033, Feb. 2015.
  • [18] Sugisawa T., Igarashi H., Properties of chaotic vibration energy harvester: comparison of numerical results with experiments, Int. J. Numer. Model. Electron. Networks, Devices Fields, no. April, pp. 1-6, 2016.
  • [19] Xu Z.L., Shan X.B., Song R.J., Xie T., Electromechanical modeling and experimental verification of nonlinear hybrid vibration energy harvester, in 2014 Joint IEEE International Symposium on the Applications of Ferroelectric, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy, 2014, pp. 1-4.
  • [20] Kulik M., Jagieła M., Coupled dynamic FE analysis of permanent-magnet mechanical vibration energy harvesting converter, Pozn. Univ. Technol. Acad. Journals. Electr. Eng., vol. 85, pp. 245-254, 2016.
  • [21] Jagieła M., Kulik M., Cogging force and frequency bandwidth of a vibration energy harvester with nonlinear electromechanical resonance, Przegląd Elektrotechniczny, vol. 1, no. 1, pp. 313-317, Jan. 2017.
  • [22] Gammaitoni L., Vocca H., Neri I., Travasso F., Orfei F., Vibration Energy Harvesting: Linear and Nonlinear Oscillator Approaches, in Sustainable Energy Harvesting Technologies - Past, Present and Future, InTech, 2011, pp. 885-890.
  • [23] Harne R.L., Wang K.W., A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct., vol. 22, no. 2, p. 23001, Feb. 2013.
  • [24] Lan C., Qin W., Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester, Mech. Syst. Signal Process., vol. 85, pp. 71-81, Feb. 2017.
  • [25] Kumar A., Balpande S.S., Anjankar S.C., Electromagnetic Energy Harvester for Low Frequency Vibrations Using MEMS, Procedia Comput. Sci., vol. 79, pp. 785-792, 2016.
  • [26] Zhou Z., Qin W., Zhu P., Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester, Sensors Actuators A Phys., vol. 243, pp. 151-158, Jun. 2016.
  • [27] Peng Z.K., Lang Z.Q., Billings S.A., Tomlinson G.R., Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis, J. of Sound and Vibration, vol. 311, pp. 56-73, 2008.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-582206a5-88cd-46ee-8416-433108547283
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.