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Abstract. In the paper we are concerned with an optimal cost reachability problem

for weighted timed automata, and we use a translation to SAT to solve the problem.

In particular, we show how to �nd a run of length k ∈ IN that starts at the initial

state and terminates at a state containing a target location, its total cost belongs to

the interval [c, c+1), for some natural number c ∈ IN, and the cost of each other run

of length k, which also leads from the initial state to a state containing the target

location, is greater or equal to c. This kind of runs is called k-quasi-optimal. We

exemplify the use of our solution to the mentioned problem by means of the air tra�c

control problem, and we provide some preliminary experimental results.

1. Introduction

In automatic veri�cation of hardware and software systems, the reachability

problem is a core decision problem. This is because it can be used to detect

deadlocks, or a violation of a safety property, which means that nothing bad

will ever happen. For real-time systems like, for example, an air tra�c control,

or process controllers in manufacturing plants, it is also reasonable to ask

questions about the minimum cost of reaching a desirable state of the system.

Therefore, in the paper, we deal with the k-optimal cost reachability problem

for weighted timed automata [3], in particular, we are interested in using SAT-

methods to solve the problem.

A timed automaton [2] is a formalism that can be used to model the be-

haviour of a real-time system. It extends a �nite automaton by adding a �nite
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set of variables that are able to measure real-time, and express timing con-

straints; these variables are called clocks. The semantics of a timed automaton

is given in terms of an in�nite labelled transition system with two kinds of

transitions: a discrete transition and a time transition. The �rst one corre-

spond to a change of a location, and the second one to the passage of time.

However, in order to de�ne the k-optimal cost reachability problem for timed

automata we need to associate costs with transitions and locations. The costs

assigned to transitions (switch costs) will give the cost of discrete transitions,

and the costs assigned to locations (duration costs) will de�ne the cost of

time spent in these locations. Such timed automata augmented with costs are

known as weighted timed automata [3], or priced timed automata [5].

Our solution to the k-optimal cost reachability problem relies on combining

the well-know forward reachability analysis and the bounded model checking

(BMC) method [6, 13, 14]. The forward reachability algorithm searches the

state space using the breadth �rst mode, whereas the BMC performs a veri�-

cation on a part of the automata model exploiting SAT solvers.

The rest of the paper is organised as follows. In the next section we pro-

vide the main formalisms used throughout the paper, i.e. weighted timed

automata. In Section 3 we de�ne and solve the k-optimal cost reachability

problem for weighted timed automata. In Section 4 we show how our solu-

tion to the considered reachability problem works by means of the air tra�c

control problem. We conclude in Section 5 by discussing related work.

2. Weighted Timed Automata

Let us start by �xing names of the sets of numbers used in the rest of the

paper. By IN = {0, 1, 2, 3, . . . } we denote the set of natural numbers, by Q
the set of non-negative rational numbers, and by PV a set of propositional

variables.

To de�ne weighted timed automata formally, we need to say what type of

clock constraints are allowed as guards and invariants, and what are the cost

functions. This is introduced in the following subsection.

2.1. Clocks and clock valuation

For a �nite set X of real variables, called clocks, the set C(X ) of all the clock
constraints over X is de�ned by the following grammar:

cc ::= true | x ∼ c | x− y ∼ c | cc ∧ cc,

where x, y ∈ X , c ∈ IN, and ∼ ∈ {≤, <,=, >,≥}.
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A clock valuation is a total mapping c : X → Q. Satis�ability of a clock

constraint cc ∈ C(X ) by a clock valuation c (c |= cc) is de�ned inductively as

follows:

• c |= true,

• c |= (x ∼ c) i� c(x) |= c,

• c |= (x− y ∼ c) i� c(x)− c(y) ∼ c,

• c |= cc1 ∧ cc2 i� c |= cc1 and c |= cc2.

In what follows, the set of all the clock valuations satisfying a clock constraint

cc is denoted by [[cc]]. Given a clock valuation c and δ ∈ Q, by c+δ we denote
a clock valuation c′ such that c′(x) = c(x) + δ, for all x ∈ X . Moreover, for

a subset of clocks X ⊆ X , c[X := 0] denotes the valuation c′ such that for

all x ∈ X, c′(x) = 0 and for all x ∈ X \X, c′(x) = c(x). Finally, by c0 we

denote the initial clock valuation, i.e. the valuation such that c0(x) = 0 for

all x ∈ X .

2.2. Syntax and semantics

We assume the de�nition of weighted timed automata from [3] but augmented

to include a special rational variable z.

De�nition 1. (Weighted timed automaton). A weighted timed automa-

ton is a tuple A = (Σ, L, l0,X , E,I, Js, Jd, z,V), where Σ is a �nite set of

labels (actions), L is a �nite set of locations, l0 is an initial location, X is

a �nite set of clocks, E ⊆ L × Σ × C(X ) × 2X × L is a transition relation,

I : L → C(X ) is an invariant function, Js : E → IN is a switch cost func-

tion, Jd : L → IN is a duration cost function, z is a rational variable, and

V : L→ 2PV is a valuation function assigning to each location a set of atomic

propositions true in that location.

The switch cost function assigns to each transition a cost expressing the

price of taking the transition. The duration cost function assigns to each

location a cost expressing the price of staying in this location for one time

unit. The invariant function assigns to each location a clock constraint ex-

pressing the condition under which A can stay in this location. Each element

t = (l, σ, cc,X, l′) ∈ E represents a transition from the location l to the lo-

cation l′, where σ is the label of the transition t, cc de�nes the enabling

conditions for t, and X is a set of clocks to be reset.

The semantics of the weighted timed automaton is de�ned by associating

to it a dense model as de�ned below.
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De�nition 2. Let A = (Σ, L, l0,X , E,I, Js, Jd, z,V) be a weighted timed au-

tomaton, z : {z} → Q a valuation for z, and z0 denote the initial valuation for

z, i.e., z0(z) = 0. A dense model for A is a tupleM(A) = (Σ∪Q, S, s0,→,V ′),
where Σ∪Q is a set of labels, S = {(l, c, z) | l ∈ L, c ∈ Q|X |, c |= I(l), z ∈ Q}
is a set of states, s0 = (l0, c0, z0) is the initial state, V ′ : S → 2PV is a val-

uation function such that V ′((l, c, z)) = V(l), and →⊆ S × Σ ∪ Q × S is the

smallest transition relation de�ned by the following rules:

• for σ ∈ Σ, (l, c, z) σ→ (l′, c′, z′) i� there exists a transition t = (l, σ,
cc,X, l′) ∈ E such that c |= cc, c |= I(l), c[X := 0] |= I(l′), and

z′ = z + Js(t) (action transition),

• for δ ∈ Q, (l, c, z) δ→ (l, c+ δ, z′) i� c, c+ δ |= I(l), and z′ = z+Jd(l) · δ
(time transition).

Intuitively, an action transition corresponds to an action performed by the

automaton under consideration. The action can be performed only if the

underlying enabling condition is satis�ed. Moreover, all the clocks that are

associated with the action are set to zero, its locations change accordingly, and

the value of the variable z is increased by the switch cost. A time transition

causes an equal increase in the value of all the clocks, and does not involve

a location change. Obviously, the new clock valuations have to still satisfy

all the location invariants, and the value of the variable z is increased by the

duration cost.

Let (l, c, z)
δ,σ→ (l′, c′, z′) denote that (l, c, z) δ→ (l′′, c′′, z′′) and (l′′, c′′, z′′) σ→

(l′, c′, z′), where σ ∈ Σ and δ ∈ Q . A run ρ of a weighted timed automaton

A is a �nite sequence of states:

(l0, c0, z0)
δ1,σ1→ (l1, c1, z1)

δ2,σ2→ . . .
δk−1,σk−1→ (lk−1, ck−1, zk−1)

δk,σk→ (lk, ck, zk)

such that (li, ci, zi) ∈ S, σi ∈ Σ, and δi ∈ Q for each i ∈ {1, . . . , k}. Hereafter,
we refer to a run ρ of length k as k-run.

Given a k-run ρ of A and cost functions Js and Jd, we associate cost to ρ
as follows:

• Js(ρ) =
∑k−1

i=0 Js(ti), where ti := (li, ci, zi)
δi+1,σi+1→ (li+1, ci+1, zi+1) ,

• Jd(ρ) =
∑k

i=1 δi · Jd(li).

The total cost associated to a k-run ρ is de�ned as J(ρ) = Jd(ρ) + Js(ρ).
The k-optimal cost for k-runs that start at a state containing location l and

end at a state containing location l′ is de�ned as J∗
k (l, l

′) = inf {J(ρ)|ρ is a k-
run from a state containing location l to a state containing location l′}.
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A k-run ρ from a state containing location l to a state containing location

l′ such that 8J(ρ)9 = 8J∗
k (l, l

′)9 is called k-quasi-optimal.

In this paper, for given two locations l and l′ we are interested in �nding

the greatest integer lower bound (g.i.l.b. for short) of the k-optimal cost for

k-runs starting at a state s containing location l and terminating at a state

t containing location l′, where k is the length of a shortest run from s to t.
Moreover, we are interested in �nding k-quasi-optimal runs. Therefore, in

Section 3 we de�ne k-optimal cost reachability problem, and we show how to

solve it using SAT-methods.

2.3. Discrete semantics

In real-time systems modeled by (weighted) timed automata, in order to use

SAT-techniques to test reachability or other properties, it is customary to

discretise the set of all the clocks valuations. Here we take the discretisation

scheme that is based on the one introduced in [15], but here we use the dis-

cretisation step that depends not only on the length of considered runs, but

also on the maximal duration cost. It uses the following set of discretised

clock's values and labels as primitives. Let cmax be the largest constant c
appearing in all the invariants and guards of a weighted timed automaton A.
For every m ∈ IN we de�ne Am = {a ∈ Q | (∃j ∈ IN) a · 2m = j} and

Bm = {b ∈ Q | (∃j ∈ IN) b · 2m = j and b < cmax +1}. Then, A =
⋃∞

m=0Am

de�nes the set of discretised clock's values, and B =
⋃∞

m=1Bm de�nes the set

of labels. We use this technique to de�ne a discretised model for a weighted

timed automaton. This model is crucial for the translation of the k-optimal

cost reachability problem to the SAT-problem as described in the next section.

To give a de�nition of a discretised model that supports clock constraints

of the form x−y ∼ c, we �rst recall the notion of weak region equivalence [15].

De�nition 3. (Weak region equivalence). Assume a set of clocks X , and

for any t ∈ Q let 〈t〉 denote the fractional (respectively integral) part of t
(respectively 8t9). The weak region equivalence is a relation ∼=⊆ QX × QX

de�ned as follows. For two clock valuations u and v in QX , u ∼= v i� all the

following conditions hold:

[1] 8u(x)9 = 8v(x)9, for all x ∈ X .

[2] 〈u(x)〉 = 0 i� 〈v(x)〉 = 0, for all x ∈ X .

[3] 〈u(x)〉 < 〈u(y)〉 i� 〈v(x)〉 < 〈v(y)〉, for all x, y ∈ X .

De�nition 4. (Discretised model). Let A = (Σ, L, l0,X , E,I, Js, Jd, z,V)
be a weighted timed automaton. A discretised model for A is a tuple
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Md(A) = (Σ ∪ B,Sd, s
0
d,→d,Vd), where Sd = L × AX × B is a set of states,

s0d = (l0, c0, z0) is the initial state, Vd : Sd → 2PV is a valuation function

de�ned by Vd((l, c, z)) = V(l), and →d⊆ Sd × (Σ ∪ B) × Sd is a time/action

transition relation de�ned by:

• Time transition: for any δ ∈ B, (l, c, z) δ→d (l, c + δ, z′) i� (l, c, z) δ→
(l, c + δ, z′) in M(A) and (∀δ′ ≤ δ) c + δ′ ∼= c or c+ δ′ ∼= c + δ,

• Action transition: for any σ ∈ Σ, (l, c, z) σ→d (l′, c′, z′) i� (l, c, z) σ→
(l′, c′, z′) in M(A).

The theorem below shows that the k-optimal cost reachability problem

for a weighted timed automaton A can be solved using the discretised model

Md(A) instead of the dense model M(A).
In what follows, we denote by ρ(s, t) a run that starts at state s and ends at

state t. Moreover, for two states s = (l, c, z) and t = (l′, c′, z′), we write s ∼= t
if and only if l = l′, c ∼= c′, 8z(z)9 = 8z′(z)9 and 〈z(z)〉 = 0⇐⇒ 〈z′(z)〉 = 0.

Theorem 1. Let A be a weighted timed automaton, s and t two states in

M(A), and ρ(s, t) a k-quasi-optimal run in M(A), where k ∈ IN is the length

of a shortest run that starts at s and ends at t. Then, there exist two states

s′ and t′ in Md(A) and there exists a k-quasi-optimal run ρ′(s′, t′) in Md(A)
such that s ∼= s′ and t ∼= t′.

Proof (Idea). The proof is an extension of the proof of Theorem 3.1 in

[15], and it is conducted by means of induction on k. The induction step

consists in showing that for each q = (l, cq, zq), r = (l′, cr, zr) ∈ M(A),
q′ = (l, cq′ , zq′), r′ = (l′, cr′ , zr′) ∈ Md(A), δ ∈ Q, δ′ ∈ B, if q ∼= q′,

δ ∼= δ′ and there exist transitions q
δ,σ→ r, q′ δ′,σ→ r′, then r ∼= r′. The cru-

cial part of the induction step is rather tedious, and relies on showing that

zq + Jd(l) · δ ∼= zq′ + Jd(l) · δ′, what requires using some techniqal facts con-

cerning the underling discretisation.

3. k-optimal cost reachability problem

In this section we formally de�ne the k-optimal cost reachability problem for

weighted timed automata, and we present a solution to the problem which

uses SAT-solvers. We start by de�ning the problem, then we describe our

solution informally, and �naly we show our algorithm.

The k-optimal cost reachability problem for weighted timed automata is

de�ned as follows.
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De�nition 5. (k-optimal cost reachability). Given a weighted timed

automaton A = (Σ, L, l0,X , E,I, Js, Jd, z,V), and a desirable location lp ∈ L
satisfying a property p. k-optimal cost reachability consists in �nding a k-
quasi-optimal run ρ starting at s0d ∈ Md(A) and terminating at a state in

Md(A) containing location lp.

Note that if ρ is a k-quasi-optimal run, then there exists c ∈ IN such that:

c ≤ J(ρ) < c + 1, and for all the k−runs ρ′ that starts at s0d and terminates

at a state in Md(A) containing location lp, J(ρ′) ≥ c holds.

3.1. Our solution � an informal explanation

We begin with an informal explanation of our solution to the k-optimal cost

reachability problem, which will help to understand the formal description

presented later on in this section.

To solve the k-optimal cost reachability problem we proceed as follows. We

�rst encode by propositional formulae both the property p, and the unfolding

of the transition relation of Md(A) up to the depth k (for k ∈ IN). Let ϕk be

the conjunction of the two above formulae. We test ϕk for the propositional

satis�ability using a SAT-solver. If the test for ϕk is positive, we calculate

the cost r0 ∈ Q of the resulting witness ρ0, and we know that J(ρ0) < Ar0B.
Next, we set c0 = Ar0B − 1, and we run the propositional satis�ability test

once again, but for the formula φk(c0) = ϕk ∧ (z < c0)1. If the test for φk(c0)
is positive, we calculate the cost r1 ∈ Q of the resulting witness ρ1, and we

know that r1 < c0. Next, we set c1 = Ar1B − 1, and we run the propositional

satis�ability test once again, but for the formula φk(c1) = ϕk ∧ (z < c1), and
so on. We stop testing if the test for φk(ci) is negative or ri = 0.

Notice, that if the test for φk(ci) is negative, we can perform one more test

for the formula ψk(ci) = ϕk ∧ (z = ci). If the test for ψk(ci) is positive, we can
conclude that k-optimal cost is equal to ci. Otherwise, we can only conclude

that the g.i.l.b. of the k-optimal cost is equal to ci.

3.2. Translation to propositional formulae

Let A = (Σ, L, l0,X , E,I, Js, Jd, z,V) be a weighted timed automaton,

Md(A) = (Σ∪B,Sd, s
0
d,→d,Vd) a discretised model, and k ∈ IN. Each state s

of Md(A) reachable on a k-run can be encoded by a bit-vector whose length,

say n, depends on the number of locations, the constant cmax, the maximal

duration cost, and the number k. Thus, each state s of Md(A) can be rep-

resented by a vector w = (w[1], . . . , w[n]) of propositional variables (usually

1The notation z < ci, for i = 0, 1, 2, . . . appearing in this section, denotes a propositional

formula encoding the fact that the value of the variable z is less than ci.
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called state variables) to which we refer to as a global state variable 2. A �nite

sequence (w0, . . . , wk) of global state variables is called a symbolic k-path.

For two global state variables w, w′, we de�ne the following propositional

formulae:

◦ Is(w) is a formula over w that is true for a valuation sw of w i� sw = s.

◦ p(w) is a formula over w that is true for a valuation sw of w i� p ∈ V(sw)
(encodes a set of states of Md(A) in which p ∈ PV holds).

◦ T (w, w′) is a formula over w and w′ that is true for two valuations sw
of w and sw′ of w′ i� (sw, sw′) ∈→d (encodes the transition relation of

Md(A)).

The de�nition of the formula T involves the Boolean encoding of addition

and multiplication of rational numbers, which has been described in [16].

We can now de�ne the propositional formula ϕk, introduced in Subsec-

tion 3.1. As it was mentioned in Subsection 3.1, ϕk is a conjunction of two

formulae. The �rst one, denoted by p(w), is a translation of a propositional

variable p that represents a location in question. The second one, denoted by

[M s0d
d ]k, encodes the unfolding of the transition relation of Md(A) up to depth

k ∈ IN.

The formula [M s0d
d ]k is de�ned over global state variables wi, for 0 ≤ i ≤ k,

and it constrains the symbolic k-path to be valid k-run of Md(A). Namely,

[M s0d
d ]k := Is0d

(w0) ∧ ∀k−1
i=0 T (wi, wi+1)

3.3. Our solution � a formal algorithm

Now we give an algorithm that formalises the method for �nding the greatest

integer lower bound of k-optimal cost informally described above.

In Algorithm 1 we use the procedure checkSAT (γ) that for any given

propositional formula γ returns a pair (X,W ), whereW denotes the valuation

returned by a SAT solver, and X can be one of the following three values:

TRUE, FALSE, and UNKNOWN . The meanings of the values TRUE
and FALSE are self-evident. The value UNKNOWN is returned either if

the procedure checkSAT is not able to decide satis�ability of its argument

2Notice that we distinguish between states s encoded as sequences of 0's and 1's and

their representations in terms of propositional variables w[i].
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within some preset timeout period, or has to terminate itself due to exhaustion

of available memory. We also use the procedure getCOST (W ) that for the
valuation W , which represents a k−run ρ, returns a natural number c such
that the cost of ρ is less than c. Further, for a given propositional formula

ϕk, we denote by φk(c) the formula ϕk ∧ (z < c), and by ψk(c) the formula

ϕk ∧ (z = c).

Algorithm 1 An algorithm for �nding g.i.l.b. of k-optimal cost

1: k ← 0
2: repeat

3: (result,W )← checkSAT (ϕk)
4: if result = FALSE then

5: k ← k + 1
6: else if result = UNKNOWN then

7: return UNKNOWN
8: end if

9: until result = TRUE
{there exists a witness of the length k for a desirable property}

10: c← getCOST (W )
11: repeat

12: if c = 0 then
13: return k-optimal cost is equal to 0
14: end if

15: (result,W )← checkSAT (φk(c− 1))
16: if result = TRUE then

17: c← getCOST (W )
18: else if result = UNKNOWN then

19: return UNKNOWN
20: end if

21: untill result = FALSE
{optimal cost of any k-run is greater or equal to c}

22: (result,W )← checkSAT (ψk(c))
23: if result = TRUE then

24: return k-optimal cost is equal to c
25: else

26: return g.i.l.b. of k-optimal cost is equal to c
27: end if
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4. Case study

4.1. An air tra�c control problem

Weighted timed automata with the rational variable are suitable formalism for

modelling several optimisation problems, for example, scheduling problems or

air tra�c control problems. In this section we take a closer look at the later

problem.

Assume a situation in which two aircrafts send a landing request to an

airport, and they are approaching the same runway. The goal is to allow both

the aircrafts to land safely and at minimum cost. Safety requires that only one

aircraft at a time must be acknowledged for landing, thus there are two possible

choices: aircraft 1 waits for the landing of aircraft 2 to be completed, or vice

versa. This waiting can be implemented either by slowing down an aircraft

(this concerns a situation, in which the aircrafts share the same trajectory, and

the aircraft that is following is faster), or by forcing one of them to change its

trajectory (this concerns a situation, in which the aircrafts reach the joining

point of their trajectories almost at the same time).

Consider the automaton in Figure 1 [3]. It models the above scenario, i.e.

the discrete values c1 and c2 are the costs of the choice of forcing, respectively,
aircraft 1 and aircraft 2 to wait. These costs label the transitions, respectively,

from location Start to location W1, and from location Start to location W2.

The cost wi, attached to location Wi, is related to the time spent on waiting

by aircraft i. For the aircraft that has to wait for the clearance, we model

two possible manoeuvres. A �rst one is to reduce the speed, and in this case

the aircraft stays in location Wi. Another possibility is to change the original

trajectory, which is modelled by the loop trough location W ′
i . Doing this

manoeuvre requires a �xed cost c′i, takes at least one time unit, and allows

to pay w′
i instead of wi per each time unit. Since it is realistic to reduce the

time a runway stays unused, we penalise this event by a cost c0 per time unit.

Finally, we assume that the landing of each aircraft takes at least one time

unit since the related acknowledgement was issued by the control tower.

4.2. Experimental results

All of the experiments have been performed on a computer equipped with the

processor Intel Core 2 Duo (2 GHz), 2 GB main memory and the operating

system Linux.

In Tables 1 and 2 we present experimental results for the air tra�c control

problem modeled by the automaton on Figure 1 with the following costs:

c0 = 20, w2 = 20, w′
2 = 40, w1 = 60, w′

1 = 40, c1 = 20, c′1 = 20, c2 = 20,
c′2 = 20; we refer to this automaton as Automaton 1.
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W ′
1 L1 Target

W1 L2

Start W2 W ′
2

1 < x1 < 2

1 < x2 < 2
x2 > 1

x1 > 1

x1 < 1, x2 < 1

c2, x1 := 0

c1
x2 := 0
x1 < 1
x2 < 1

x1 > 1
c′1
x1 := 0

x2 > 1

c′2, x2 := 0c0 x1 < 2

w2 w′
2

c0 + w2

c0 + w1
w′

1

x2 < 2

w1

Figure 1: A weighted timed automaton for an air tra�c control problem.

Table 1 shows how we get a shortest run of Automaton 1 that leads from

the initial state s0d = (Start,< 0, 0 >, 0) to a state containing the location

Target. The cost of the 6-run is equal to 64 12
512 , i.e., is less or equal than 65.

Table 2 shows how we get the 6-quasi-optimal run of Automaton 1 such that

the g.i.l.b. of 6-optimal cost is equal to 40. Table 3 shows the 6-quasi-optimal

run of Automaton 1 that leads from the initial state to a state containing the

location Target with the g.i.l.b. of 6-optimal cost equal to 40.

BMC4WTA RSat

k variables clauses sec MB sec MB satis�able

0 133 190 0.00 1.9 0.0 1.3 NO

2 2278 6881 0.12 2.4 0.0 1.8 NO

4 4901 15057 0.12 3.1 0.0 2.4 NO

6 7275 22480 0.19 3.7 0.0 2.9 YES

Table 1: The shortest run of Automaton 1 on which the Target location is

reachable. Its total cost is 64 12
512 .

5. Conclusions and related work

In this paper we have de�ned the k-optimal cost reachability problem for

weighted timed automata, and presented a SAT-based method consisting in

reducing this problem to the SAT-problem. In particular, we have shown how

to �nd a k-quasi-optimal run that starts at the initial state and terminates at

a desirable target state, and how to calculate g.i.l.b. of k-optimal cost for it.

Experimental results, which we have performed, show that the proposed

algorithm can be very useful in �nding g.i.l.b. of k-optimal cost. Obviously,
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our method allows for �nding only lower and upper bounds on the cost, to

which the k-quasi-optimal run belongs (an unit interval [c, c+ 1), for c ∈ IN),
but in many real-time settings such a cost optimal approximation is su�cient.

BMC4WTA RSat

z < c cost variables clauses sec MB sec MB satis�able

z < 64 59132
512 8194 25412 0.22 3.8 0.0 3.2 YES

z < 59 48444
512 8304 25784 0.21 3.9 0.1 3.2 YES

z < 48 46508
512 8238 25558 0.22 3.9 0.0 3.2 YES

z < 46 43504
512 8297 25756 0.22 3.9 0.0 3.2 YES

z < 43 42 36
512 8318 25826 0.25 3.9 0.0 3.2 YES

z < 42 41368
512 8311 25798 0.22 3.9 0.0 3.2 YES

z < 41 40480
512 8339 25889 0.22 3.9 0.0 3.2 YES

z < 40 - 8267 25652 0.22 3.9 0.0 3.2 NO

z = 40 - 7552 23311 0.20 3.7 0.0 3.0 NO

Table 2: Searching for 6-quasi-optimal run of Automaton 1 that leads from the

initial state to a state containing the location Target. The g.i.l.b. of 6-optimal

cost is equal to 40.

k: location value of z delay values of x1, x2

0: Start < 0 + 0
512 > < 0 + 0

512 > < 0 + 0
512 , 0 +

0
512 >

1: Start < 0 + 20
512 > < 0 + 1

512 > < 0 + 1
512 , 0 +

1
512 >

2: W2 < 20 + 20
512 > < 0 + 0

512 > < 0 + 0
512 , 0 +

1
512 >

3: W2 < 40 + 480
512 > < 1 + 23

512 > < 1 + 23
512 , 1 +

24
512 >

4: L2 < 40 + 480
512 > < 0 + 0

512 > < 1 + 23
512 , 1 +

24
512 >

5: L2 < 40 + 480
512 > < 0 + 0

512 > < 1 + 23
512 , 1 +

24
512 >

6: Target < 40 + 480
512 > < 0 + 0

512 > < 1 + 23
512 , 1 +

27
512 >

Table 3: A 6-quasi-optimal run of Automaton 1 leading to a state containing

the location Target.

The optimal reachability problem was considered by many researchers and

several approaches treating the problem in the context of timed or hybrid

automata have been described in the literature, but none of them used SAT-

methods. In particular, in [9] the problem of computing lower and upper

bounds on time delays in timed automata was addressed. In [1] a duration-

bounded reachability problem for timed automata augmented to include the

duration cost function is considered. This problem asks if there is a run of

the timed automaton from the initial state to the given �nal state such that

the duration of the run satis�es an arithmetic constraint (an optimal cost).
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The duration-bounded reachability problem has been also analysed in [10].

This is because the problem can be reduced to checking whether a duration

formula, which de�nes an optimal cost, is satis�ed by a integer computation

of an integration graph (a kind of a timed automaton). The solution is based

on constructing a set of equations that characterises the length of time a com-

putation spends in each automaton location.

The work [4] also tackles the optimal (minimum-time) reachability problem

for timed automata. In particular, here, the problem is formulated in terms

of a timed game automaton (TGA), and solved by constructing an optimal

strategy using a backward �xed-point calculation on the state-space of the

TGA. Minimum-time reachability problem for timed automata is also solved

in [12]. However here, the solution is based on the forward �xed-point algo-

rithm that generates on-the-�y a forward reachability graph for a given timed

automaton.

The paper [5] introduces priced timed automata as an extension of timed

automata with prices on both transitions and locations, and shows how to

solve the minimum cost reachability problem; this sort of automata we have

used in the paper. In [3] such reachability problem is called as the single-

source optimal reachability problem, and it is solved by a reduction of the

problem to a parametric shortest-path problem. The methods presented in

both papers [5] and [3] are based on clock region graphs; in [3] the authors

refer to priced timed automata as weighted timed automata.

Further, the paper [7] addresses the optimal reachability problem for

weighted timed automata with cost functions allowing for both positive and

negative costs on edges and locations, and apply the proposed method to

timed games. In [11] the decidability of the optimal (minimum and maximum

cost) reachability problems for multi-priced timed automata (an extension of

timed automata with multiple cost variables evolving according to given rates

for each location) is proved, and in [8] cost-optimal in�nite schedules in terms

of minimal (or maximal) cost per time ratio in the limit is considered.
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