Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Plant viruses cause crop losses in agronomically and economically important crops, making global food security a challenge. Although traditional plant breeding has been effective in controlling plant viral diseases, it is unlikely to solve the problems associated with the frequent emergence of new and more virulent virus species or strains. As a result, there is an urgent need to develop alternative virus control strategies that can be used to more easily contain viral diseases. A better understanding of plant defence mechanisms will open up new avenues for research into plant-pathogen interactions and the development of broad-spectrum virus resistance. T he scientific literature was evaluated and structured in this review, and the results of the reliability of the methods of analysis used were filtered. As a result, we described the molecular mechanisms by which viruses interact with host plant cells. To develop an effective strategy for the control of plant pathogens with a significant intensity on the agricultural market, clear and standardised recommendations are required. The current review will provide key insights into the molecular underpinnings underlying the coordination of plant disease resistance, such as main classes of resistance genes, RNA interference, and the RNA-mediated adaptive immune system of bacteria and archaea - clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated Cas proteins - CRISPR/Cas. Future issues related to resistance to plant viral diseases will largely depend on integrated research to transfer fundamental knowledge to applied problems, bridging the gap between laboratory and field work.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
147--158
Opis fizyczny
Bibliogr. 93 poz., rys., tab.
Twórcy
autor
- L.N. Gumilyov Eurasian National University, Faculty of Natural Sciences, Satbayeva St. 2, Astana 010000, Kazakhstan
autor
- L.N. Gumilyov Eurasian National University, Faculty of Natural Sciences, Satbayeva St. 2, Astana 010000, Kazakhstan
autor
- L.N. Gumilyov Eurasian National University, Faculty of Natural Sciences, Satbayeva St. 2, Astana 010000, Kazakhstan
Bibliografia
- Abbott, T.R. et al. (2020) “Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza,” Cell, 181(4), pp. 865–876.e12. Available at: https://doi.org/10.1016/j.cell.2020.04.020.
- Abudayyeh, O.O. et al. (2017) “RNA targeting with CRISPR–Cas13,” Nature, 550(7675), pp. 280–284. Available at: https://doi.org/10.1038/nature24049.
- Abudayyeh, O.O. et al. (2019) “Nucleic acid detection of plant genes using CRISPR-Cas13,” The CRISPR Journal, 2(3), pp. 165–171. Available at: https://doi.org/10.1089/crispr.2019.0011.
- Ai, Y., Liang, D. and Wilusz, J.E. (2022) “CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells,” Nucleic Acids Research, 50(11), e65. Available at: https://doi.org/10.1093/nar/gkac159.
- Ali, Q. et al. (2022) “Genome engineering technology for durable disease resistance: Recent progress and future outlooks for sustainable agriculture,” Frontiers in Plant Science, 13, 860281. Available at: https://doi.org/10.3389/fpls.2022.860281.
- Ali, Z. et al. (2016) “CRISPR/Cas9-mediated immunity to gemini-viruses: differential interference and evasion,” Scientific reports, 6(1), pp. 1–13. Available at: https://doi.org/10.1038/srep26912.
- Aman, R. et al. (2018) “Engineering RNA virus interference via the CRISPR/Cas13 machinery in Arabidopsis,” Viruses, 10(12), 732. Available at: https://doi.org/10.3390/v10120732.
- Ashraf, S. et al. (2022) “RNA Editing with CRISPR/Cas13,” in A. Ahmad, S.H. Khan, and Z. Khan (eds) The CRISPR/Cas tool kit for genome editing. Singapore: Springer, pp. 219–254.
- Bai, S. et al. (2012) “Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance,” PLoS Pathogens, 8(6), e1002752. Available at: https://doi.org/10.1371/journal.ppat.1002752.
- Baltes, N.J. et al. (2017) “Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system,” Nature Plants, 1(10), 15145. Available at: https://doi.org/10.1038/nplants.2015.145.
- Baruah, A. et al. (2020) “Non-host resistance to plant viruses: What do we know?,” Physiological and Molecular Plant Pathology, 111, 101506. Available at: https://doi.org/10.1016/j.pmpp.2020.101506.
- Bau, H.J. et al. (2003) “Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya,” Phytopathology, 93(1), pp. 112–120. Available at: https://doi.org/10.1094/PHYTO.2003.93.1.112.
- Cao, Y. et al. (2020) “Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity,” Frontiers in Microbiology, 11, 2613. Available at: https://doi.org/10.3389/fmicb.2020.593700.
- Carr, J.P., Lewsey, M.G. and Palukaitis, P. (2010) “Signaling in induced resistance,” in J.P. Carr and G. Loebenstein (eds.) Natural and engineered resistance to plant viruses, II. Advances in virus research, 76, pp. 57–121. Available at: https://doi.org/10.1016/S0065-3527(10)76003-6.
- Chandrasekaran, J. et al. (2016) “Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology,” Molecular Plant Pathology, 17(7), pp. 1140–1153. Available at: https://doi.org/10.1111/mpp.12375.
- Cox, D.B. et al. (2017) “RNA editing with CRISPR-Cas13,” Science, 358 (6366), pp. 1019–1127. Available at: https://doi.org/10.1126/science.aaq0180.
- Das, P.R. and Sherif, S.M. (2020) “Application of exogenous dsRNAs-induced RNAi in agriculture: Challenges and triumphs,” Frontiers in Plant Science, 11, 946. Available at: https://doi.org/10.3389/fpls.2020.00946.
- Dimitriu, T. et al. (2022) “Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition,” Cell Host & Microbe, 30(1), pp. 31–40. Available at: https://doi.org/10.1016/j.chom.2021.11.014.
- Ding, S.-W. (2010) “RNA-based antiviral immunity,” Nature Reviews Immunology, 10, pp. 632–644. Available at: https://doi.org/10.1038/nri2824.
- Dixit, A. et al. (2016) “Perturb-Seq: Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens,” Cell, 167(7), pp. 1853–1866.e17. Available at: https://doi.org/10.1016/j.cell.2016.11.038.
- Duan, C.G., Wang C.H. and Guo, H.S. (2012) “Application of RNA silencing to plant disease resistance,” Silence, 3, 5. Available at: https://doi.org/10.1186/1758-907X-3-5.
- Fuentes, A. et al. (2016) “Field trial and molecular characterization of RNAi-transgenic tomato plants that exhibit resistance to tomato yellow leaf curl geminivirus,” Molecular Plant-Microbe Interactions, 29(3), pp. 197–209. Available at: https://doi.org/10.1094/MPMI-08-15-0181-R
- Gao, C. (2021) “Genome engineering for crop improvement and future agriculture,” Cell, 184(6), pp. 1621–1635. Available at: https://doi.org/10.1016/j.cell.2021.01.005.
- Gawehns, F., Cornelissen, B.J. and Takken, F.L. (2013) “The potential of effector-target genes in breeding for plant innate immunity,” Microbial Biotechnology, 6(3), pp. 223–229. Available at: https://doi.org/10.1111/1751-7915.12023.
- Gogoi, A. et al. (2017) “Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves,” Planta, 246(6), pp. 1233–1241. Available at: https://doi.org/10.1007/s00425-017-2776-7.
- Gootenberg, J.S. et al. (2017) “Nucleic acid detection with CRISPR-Cas13a/C2c2,” Science, 356(6336), pp. 438–442. Available at: https://doi.org/10.1126/science.aam9321.
- Gootenberg, J.S. et al. (2018) “Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6,” Science, 360 (6387), pp. 439–448. Available at: https://doi.org/10.1126/science.aaq0179.
- Hily, J.M. et al. (2007) “Plum pox virus coat protein gene Intron-hairpin-RNA (ihpRNA) constructs provide resistance to plum pox virus in Nicotiana benthamiana and Prunus domestica,” Journal of the American Society for Horticultural Science, 132(6), pp. 850–858. Available at: https://doi.org/10.21273/JASHS.132.6.850.
- Iki, T., Tschopp, M.A. and Voinnet, O. (2017) “Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing,” RNA, 23(5), pp. 639–654. Available at: https://doi.org/10.1261/rna.060434.116.
- Ipsaro, J.J. and Joshua-Tor, L. (2015) “From guide to target: Molecular insights into eukaryotic RNA-interference machinery,” Nature Structural & Molecular Biology, 22(1), pp. 20–28. Available at: https://doi.org/10.1038/nsmb.2931.
- Jones, J. and Dangl, J.L. (2006) “The plant immune system,” Nature, 444, pp. 323–329. Available at: https://doi.org/10.1038/nature05286.
- Kang, W.H. et al. (2012) “Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper,” PLOS ONE, 7, e43136. Available at: https://doi.org/10.1371/journal.pone.0043136.
- Kenesi, E. et al. (2017) “A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC,” Nucleic Acids Research, 45(13), pp. 7736–7750. Available at: https://doi.org/10.1093/nar/gkx379.
- Khan, M.A.U. et al. (2015) “Molecular and biochemical characterization of cotton epicuticular wax in defense against cotton leaf curl disease,” Iranian Journal of Biotechnology, 13(4), pp. 3–9. Available at: https://doi.org/10.15171/ijb.1234.
- Kis, A. et al. (2019) “Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system,” Plant Biotechnology Journal, 17(6), pp. 1004–1006. Available at: https://doi.org/10.1111/pbi.13077.
- Knott, G.J. et al. (2017) “Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme,” Nature Structural & Molecular Biology, 24(10), pp. 825–833. Available at: https://doi.org/10.1038/nsmb.3466.
- Konermann, S. et al. (2018) “Transcriptome engineering with RNA-targeting type VI-D CRISPR effector,” Cell, 173(3), pp. 665–676. e14. Available at: https://doi.org/10.1016/j.cell.2018.02.033.
- Korner, C.J. et al. (2013) “The immunity regulator BAK1 contributes to resistance against diverse RNA viruses,” Molecular Plant-Microbe Interactions, 26(11), pp. 1271–1280. Available at: https://doi.org/10.1094/MPMI-06-13-0179-R.
- Kumar, R., Kumar, A. and Sinha, S. (2022) “Natural and engineered resistance: implications for managing the cassava mosaic disease,” in R.K. Gaur, P. Sharma and H. Czosnek (eds.) Geminivirus: Detection, diagnosis and management. Elsevier, pp. 531–548.
- Kundu, J.K. et al. (2008) “Role of the 25–26 nt siRNA in the resistance of transgenic Prunus domestica graft inoculated with plum pox virus,” Virus Genes, 36(1), pp. 215–220. Available at: https://doi.org/10.1007/s11262-007-0176-y.
- Kunik, T. et al. (1994) “Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus,” Nature Biotechnology, 12(5), pp. 500–504. Available at: https://doi.org/10.1038/nbt0594-500.
- Kurihara, N. et al. (2022) “Structure of the type VC CRISPR-Cas effector enzyme,” Molecular Cell, 82(10), pp. 1865–1877. Available at: https://doi.org/10.1016/j.molcel.2022.03.006.
- Kuscu, C. et al. (2014) “Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease,” Nature Biotechnology, 32(7), pp. 677–683. Available at: https://doi.org/10.1038/nbt.2916.
- LeBlanc, C. et al. (2018) “Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress,” The Plant Journal, 93(2), pp. 377–386. Available at: https://doi.org/10.1111/tpj.13782.
- Li, B. et al. (2022) “Highly efficient genome editing using geminivirus-based CRISPR/Cas9 system in cotton plant,” Cells, 11(18), 2902. Available at: https://doi.org/10.3390/cells11182902.
- Macovei, A. et al. (2018) “Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus,” Plant Biotechnology Journal, 16(11), pp. 1918–1927. Available at: https://doi.org/10.1111/pbi.12927.
- Mahas, A., Aman, R. and Mahfouz, M. (2019) “CRISPR-Cas13d mediates robust RNA virus interference in plants,” Genome Biology, 20, 263. Available at: https://doi.org/10.1186/s13059-019-1881-2.
- Malzahn, A.A. et al. (2019) “Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis,” BMC Biology, 17, 9. Available at: https://doi.org/10.1186/s12915-019-0629-5.
- Mann, K.S. et al. (2016) “Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta,” Virology, 490, pp. 27–40. Available at: https://doi.org/10.1016/j.virol.2016.01.003.
- Mao, Y. et al. (2018) “Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems,” Genome Biology, 19(1), 149. Available at: https://doi.org/10.1186/s13059-018-1529-7.
- Mehta, D. et al. (2019) “Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses,” Genome Biology, 20(1), 80. Available at: https://doi.org/10.1186/s13059-019-1678-3.
- Mitter, N. et al. (2017) “Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses,” Nature Plants, 3(2), 16207. Available at: https://doi.org/10.1038/nplants.2016.207.
- Mohanraju, P. et al. (2022) “Alternative functions of CRISPR-Cas systems in the evolutionary arms race,” Nature Reviews Microbiology, 20(6), pp. 351–364. Available at: https://doi.org/10.1038/s41579-021-00663-z.
- Napoli, C., Lemieux, C. and Jorgensen, R. (1990) “Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans,” The Plant Cell, 2(4), pp. 279–289. Available at: https://doi.org/10.1105/tpc.2.4.279.
- Oerke, E.C. and Dehne, H.W. (2004) “Safeguarding production – losses in major crops and the role of crop protection,” Crop Protection, 23(4), pp. 275–285. Available at: https://doi.org/10.1016/j.cro-pro.2003.10.001
- Omarov, R. et al. (2006) “Biological relevance of a stable biochemical interaction between the tombusvirus-encoded P19 and short interfering RNAs,” Journal of Virology, 80(6), pp. 3000–3008. Available at: https://doi.org/10.1128/JVI.80.6.3000-3008.2006.
- Omarov, R.T. and Scholthof, H.B. (2012) “Biological chemistry of virus-encoded suppressors of RNA silencing: an overview,” Antiviral Resistance in Plants, 894, pp. 39–56. Available at: https://doi.org/10.1007/978-1-61779-882-5_3.
- Price, A.A. et al. (2015) “Cas9-mediated targeting of viral RNA in eukaryotic cells,” Proceedings of the National Academy of Sciences, 112(19), pp. 6164–6169. Available at: https://doi.org/10.1073/pnas.1422340112.
- Pyott, D.E., Sheehan, E. and Molnar, A. (2016) “Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants,” Molecular Plant Pathology, 17(8), pp. 1276–1288. Available at: https://doi.org/10.1111/mpp.12417.
- Qiu, W., Park, J.W. and Scholthof H.B. (2002) “Tombusvirus P19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity,” Molecular Plant-Microbe Interactions, 15(3), pp. 269–280. Available at: https://doi.org/10.1094/MPMI.2002.15.3.269.
- Robertson, G., Burger, J. and Campa, M. (2022) “CRISPR/Cas-based tools for the targeted control of plant viruses,” Molecular Plant Pathology, 23(11), pp. 1701–1718. Available at: https://doi.org/10.1111/mpp.13252.
- Sanford, J.C. and Johnston, S.A. (1985) “The concept of parasite-derived resistance – deriving resistance genes from the parasite’s own genome,” Journal of Theoretical Biology, 113(2), pp. 395–405. Available at: https://doi.org/10.1016/S0022-5193(85)80234-4.
- Schunder, E. et al. (2013) “First indication for a functional CRISPR/Cas system in Francisella tularensis,” International Journal of Medical Microbiology, 303(2), pp. 51–60. Available at: https://doi.org/10.1016/j.ijmm.2012.11.004.
- Sekine, K.T. et al. (2004) “Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism,” Molecular Plant-Microbe Interactions, 17(6), 623. Available at: https://doi.org/10.1094/MPMI.2004.17.6.623.
- Shamekova, M. et al. (2014) “Tombusvirus-based vector systems to permit over-expression of genes or that serve as sensors of antiviral RNA silencing in plants,” Virology, 452, pp. 159–165. Available at: https://doi.org/10.1016/j.virol.2013.12.031.
- Sharma, V.K. et al. (2022) “CRISPR guides induce gene silencing in plants in the absence of Cas,” Genome Biology, 23, 6. Available at: https://doi.org/10.1186/s13059-021-02586-7.
- Shmakov, S. et al. (2017) “Diversity and evolution of class 2 CRISPR-Cas systems,” Nature Reviews Microbiology, 15(3), pp. 169–182. Available at: https://doi.org/10.1038/nrmicro.2016.184.
- Sidorova, T. et al. (2019) “Agrobacterium-mediated transformation of Russian commercial plum cv. “Startovaya” (Prunus domestica L.) with virus-derived hairpin RNA construct confers durable resistance to PPV infection in mature plants,” Frontiers in Plant Science, 10, 286. Available at: https://doi.org/10.3389/fpls.2019.00286.
- Singh, J. et al. (2022) “CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants,” Molecular Biology Reports, pp. 11443–11467. Available at: https://doi.org/10.1007/s11033-022-07741-2.
- Smargon, A.A. et al. (2017) “Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28,” Molecular Cell, 65(4), pp. 618–630.e7. Available at: https://doi.org/10.1016/j.molcel.2016.12.023.
- Tal, N. and Sorek, R. (2022) “SnapShot: bacterial immunity,” Cell, 185 (3), pp. 578–578e1. Available at: https://doi.org/10.1016/j.cell.2021.12.029.
- Tashkandi, M. et al. (2018) “Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato,” Plant Signaling & Behavior, 13(10), e1525996. Available at: https://doi.org/10.1080/15592324.2018.1525996.
- Tripathi, L., Ntui, V.O. and Tripathi, J.N. (2021) “RNA interference and CRISPR/Cas9 applications for virus resistance,” in K.A. Abd-Elsalam and K.-T. Lim (eds.) CRISPR and RNAi Systems. Nanobiotechnology Approaches to Plant Breeding and Protection. Nanobiotechnology for Plant Protection. Amsterdam: Elsevier, pp. 163–182. Available at: https://doi.org/10.1016/B978-0-12-821910-2.00029-1.
- Truniger, V. and Aranda, M.A. (2009) “Recessive resistance to plant viruses,” in G. Loebenstein and J.P. Carr (eds) Advances in Virus Research, 75, pp. 119–231. Available at: https://doi.org/10.1016/S0065-3527(09)07504-6.
- Tsai, S.Q. et al. (2015) “GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases,” Nature Biotechnology, 33(2), pp. 187–197. Available at: https://doi.org/10.1038/nbt.3117.
- Ualiyeva, R. et al. (2022) „Agrotechnological methods of plant feeders applying for spring wheat agrocenoses (North-Eastern Kazakhstan varieties),” Journal of Water and Land Development, 55, pp. 28–40. Available at: https://doi.org/10.24425/jwld.2022.142301.
- Verlaan, M.G. et al. (2013) “The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA–dependent RNA polymerases,” PLoS Genetics, 9(3), e1003399. Available at: https://doi.org/10.1371/journal.pgen.1003399.
- Voinnet, O. (2005) “Induction and suppression of RNA silencing: insights from viral infections,” Nature Reviews Genetics, 6, pp. 206–220. Available at: https://doi.org/10.1038/nrg1555.
- Wang, C. et al. (2021) “Microbial single-strand annealing proteins enable CRISPR gene-editing tools with improved knock-in efficiencies and reduced off-target effects,” Nucleic Acids Research, 49(6), p. e36. Available at: https://doi.org/10.1093/nar/gkaa1264.
- Wilson, T.M. (1993) “Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms,” Proceedings of the National Academy of Sciences, 90(8), pp. 3134– 3141. Available at: https://doi.org/10.1073/pnas.90.8.3134.
- Worrall, E.A. et al. (2019) “Exogenous application of RNAi-inducing double-stranded RNA inhibits aphid-mediated transmission of a plant virus,” Frontiers in Plant Science, 10, 265. Available at: https://doi.org/10.3389/fpls.2019.00265.
- Yergaliyev, T. et al. (2016) “The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection,” Plant Physiology and Biochemistry, 109, pp. 36–44. Available at: https://doi.org/10.1016/j.plaphy.2016.09.001.
- Yin, K. et al. (2019) “Engineer complete resistance to Cotton leaf curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana,” Phytopathology Research, 1, 9. Available at: https://doi.org/10.1186/s42483-019-0017-7.
- Yu, Y. et al. (2022) “Targeting of SPCSV-RNase3 via CRISPR-Cas13 confers resistance against sweet potato virus disease,” Molecular Plant Pathology, 23, pp. 104–117. Available at: https://doi.org/10.1111/mpp.13146.
- Zaidi, S.S.E.A. et al. (2016) “Engineering plant immunity: Using CRISPR/Cas9 to generate virus resistance,” Frontiers in Plant Science, 7, 1673. Available at: https://doi.org/10.3389/fpls.2016.01673.
- Zetsche, B. et al. (2017) “Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array,” Nature Biotechnology, 35(1), pp. 31–34. Available at: https://doi.org/10.1038/nbt.3737.
- Zhan, X. et al. (2019) “Generation of virus-resistant potato plants by RNA genome targeting,” Plant Biotechnology Journal, 17(9), pp. 1814–1822. Available at: https://doi.org/10.1111/pbi.13102.
- Zhang, C. et al. (2022) “Virus-induced gene editing and its applications in plants,” International Journal of Molecular Sciences, 23(18), 10202. Available at: https://doi.org/10.3390/ijms231810202.
- Zhang, Q. et al. (2018) “Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention” Plant Molecular Biology, 96(4), pp. 445–456. Available at: https://doi.org/10.1007/s11103-018-0709-x.
- Zhang, T. et al. (2017) “Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants,” Plant Biotechnology Journal, 17(7), pp. 1185–1187. Available at: https://doi.org/10.1111/pbi.13095.
- Zhang, T. et al. (2018) “Establishing RNA virus resistance in plants by harnessing CRISPR immune system,” Plant Biotechnology Journal, 16(8), pp. 1415–1423. Available at: https://doi.org/10.1111/pbi.12881.
- Zhang, Z.Y. et al. (2010) “RNA interference-based transgenic maize resistant to maize dwarf mosaic virus,” Journal of Plant Biology, 53(4), pp. 297–305. Available at: https://doi.org/10.1007/s12374-010-9117-8.
- Zhang, Z.Y. et al. (2013) “RNA interference-mediated resistance to maize dwarf mosaic virus,” Plant Cell, Tissue and Organ Culture (PCTOC), 113(3), pp. 571–578. Available at: https://doi.org/10.1007/s11240-013-0289-z.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-581cd45c-587b-479e-b1d4-9e823bbfb6d7