PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wykorzystanie oznaczeń izotopowych węgla nieorganicznego do oceny zanieczyszczenia wód powierzchniowych i podziemnych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Possibility of using of inorganic carbon isotopes in the assessment of surface water and groundwater contaminantions
Języki publikacji
PL
Abstrakty
PL
Badania stabilnych izotopów węgla znajdują zastosowanie zarówno w celach poznawczych jak i praktycznych. Służą do określenia genezy węgla w środowisku wodnym oraz są stosowane do wykazania zanieczyszczenia związkami zawierającymi węgiel. Na podstawie analizy składu izotopowego węgla w wodach podziemnych można między innymi ocenić zasięg oddziaływania składowiska odpadów na środowisko gruntowo-wodne. Celem artykułu jest przedstawienie szerokich możliwości wykorzystania oznaczeń stabilnych izotopów węgla nieorganicznego do interpretacji dotyczącej wód powierzchniowych i podziemnych pod kątem naturalnych i antropogenicznych czynników wpływających na stan ich jakości. Z przeprowadzonej analizy wynika, że metoda bazująca na pomiarach składu izotopowego węgla w środowisku wodnym może być stosowana powszechnie, ponieważ węgiel pochodzący z różnych źródeł różni się wyraźnie składem izotopowym.
EN
Carbon isotope analyses can be used for knowledge and practical purpose. They can be used to assess the genesis of carbon in geochemical environment, and may also be used to indicate groundwater contamination by carbon-containing compounds. Based on this method it is possible to delineate contamination area by the activity of the landfill site. The aim of the paper is to indicate the possibilities of using carbon isotope composition for interpretation surface water and groundwater in terms of natural and anthropogenic factors influencing their quality. This method can be applied universally in water research, because carbon sources are different in isotopic composition.
Rocznik
Tom
Strony
172--187
Opis fizyczny
Bibliogr. 156 poz., tab., rys.
Twórcy
autor
  • Instytut Hydrogeologii i Geologii Inżynierskiej, Wydział Geologii, Uniwersytet Warszawski, ul. Żwirki i Wigury 93, 02-089 Warszawa
Bibliografia
  • 1. Abichou T., Chanton J., Powelson D., Fleiger J., Escoriaza S., Lei Y., Stern J., 2006. Methane flux and oxidation at two types of intermediate landfill covers, Waste Management, 26(11), 1305–1312.
  • 2. Aelion C.M, Höhener P. Hunkeler, Aravena R., 2009. Environmental Isotopes in Biodegradation and Bioremediation, Taylor & Francis Group, Boca Raton.
  • 3. Ambus P., Andersen B. L., Kemner M., Sørensen B., Wille J., 2002. Natural carbon isotopes used to study methane consumption and production in soil, Isotopes in Environmental and Health Studies, 38(3), 149–157.
  • 4. Amiotte-Suchet P., Aubert D., Probst J.L., Gauthier-Lafay F., Probst A., Andreux F., Viville D., 1999. δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study Vosges mountains, France, Chem. Geol. 159(1–4), 129–145.
  • 5. Andrews J.A., Harrison K.G., Matamala R., Schlesinger W.H., 1999. Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon Dioxide Enrichment (FACE). Soil Sci. Soc. Am. J., 63(5), 1429–1435.
  • 6. Atekwana E.A., Krishnamurthy R.V., 1998. Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evolution technique, Journal of Hydrology, 205, 265–278.
  • 7. Atekwana E.A., Krishnamurthy R.V., 2004. Dissolved Inorganic Carbon (DIC) in Natural Waters for Isotopic Analysis, chapter 10, in: De Groot P. A., (eds.), – Handbook of Stable Isotope Analytical Techniques, vol. I, Elsevier, 203–228.
  • 8. Aucour A.M., Sheppard S.M.F., Guyomar O.,Wattelet J., 1999. Use of 13C to trace origin and cycling of inorganic carbonin the Rhône river system, Chem. Geol., 159, 87–105.
  • 9. Bade D.L., Carpenter S.R., Cole J.J., Hanson P.C., Hesslein R.L., 2004. Controls of δ13C-DIC in lakes: Geochemistry, lake metabolism, and morphometry. Limnology and Oceanography, 49(4), 1160–1172.
  • 10. Baedecker M.J., Back W., 1979. Hydrogeological Processes and Chemical Reactions at a Landfill, Ground Water, 17(5), 429–437.
  • 11. Baedecker M.J., Cozzarelli I., 1992. The determination and fate of unstable constituents of contaminated groundwater, IN: Lesage S., Jackson R.E (eds.), Groundwater contamination and analysis at hazardous waste site, Marcel Dekker Inc, New York.
  • 12. Barker J.F., Fritz P., 1981. Carbon isotope fractionation during microbial methane oxidation, Nature, 293, 289–291.
  • 13. Basberg L., Banks D., Sæther, O.M., 1998. Redox processes in groundwater impacted by landfill leachate. Aquat. Geochem., 4, 253–272.
  • 14. Bergamaschi P., Lubina C., Königstedt R., Fischer H., Veltkamp A. C., Zaagstra O., 1998. Stable isotope signatures (δ13C, δD) of methane from European landfill sites, J. Geophys. Res., 103, 8251–8265.
  • 15. Bernard B.B., Brooks J.M. and Sackett W.M., 1977. A Geochemical Model for Characterization of Hydrocarbon Gas Sources in Marine Sediments. In Offshore Technology Conference, May 1977, OTC 2934, 435–438.
  • 16. Bogner J., Spokas K.A., 1993. Landfill CH4: Rates, Fates, and Role in Global Carbon Cycle, Chemosphere, 26(1–4), 369–386.
  • 17. Boltze U., de Freitas M.H., 1997. Monitoring Gas Emissions From Landfill Sites, Waste Management & Research, 15(5), 463–47.
  • 18. Börjesson G., Svensson G.H., 1997. Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation, Waste Manage. Res., 15, 33–54.
  • 19. Börjesson G., Chanton J., Svensson B.H., 2001. Methane Oxidation in Two Swedish Landfill Covers Measured with Carbon-13 to Carbon-12 Isotope Ratios, Journal of Environmental Quality, 30, 369–376.
  • 20. Börjesson G., Chanton J., Svensson B.H., 2007. Methane Oxidation in Swedish Landfill Quantified with the stable carbon isotope technique in combination with an optical method for emitted methane, Environ. Sci. Technol., 41, 6684–6690.
  • 21. Boutton T.W., 1991. Stable carbon isotope ratios of natural materials, XI. Atmospheric. terrestrial, marine and freshwater environment, W: Coleman D.C, Fry B. (Eds). Carbon Isotope Techniques. Academic Print, San Diego California, 173–186.
  • 22. Berrittella C., Huissteden J. 2011. Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: the role of vegetation parameters. Climate of the Past, 7, 1075–1087.
  • 23. Buckau G., Artinger R., Fritz P., Geyer S., Kim J.I., Wolf M., 2000a. Origin and mobility of humic coloids in the Gorleben aquifer system, Applied Geochemistry, 15, 171–179.
  • 24. Buckau G., Artinger R., Fritz P., Geyer S., Wolf M., Fritz P., Kim J.I., 2000b. 14C dating of Gorleben aquifer system, Applied Geochemistry, 15, 583–597.
  • 25. Buckau G., Artinger R., Geyer S., Wolf M., Fritz P., Kim J.I., 2000c. Groundwater in-situ generation of aquatic humic and fulvic acids and the mineralization of sedimentary organic carbon, Applied Geochemistry, 15, 819–832.
  • 26. Cerling, T.E. 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sc. Lett. 71(2), 229−240.
  • 27. Cerling T.E., Solomon D.K., Quade J., Bowman J.R., 1991. On the isotopic composition of carbon in soil carbon dioxide, Geochim. Cosmochim. Acta, 55, 3403–3405.
  • 28. Cerling T.E., Quade J., 1993. Stable Carbon and Oxygen isotopes in Soil Carbonates, W: Swart P.K, Lohmann K.C., Mckenzie J., Savin S. Climate Change in Continental Isotopic Records, Copyright 1993 by the American Geophysical Union.
  • 29. Chanton J.P. 2005. The effect of gas transport on the isotope signature of methane in wetlands. Organic Geochemistry, 36, 753–768.
  • 30. Chapelle F.H., Knobel L.L., 1985. Stable carbon isotopes of bicarbonate in the Aquia aquifer, Maryland--evidence for an isotopically heavy source of carbon dioxide: Ground Water, 23(5), 592–599.
  • 31. Christensen T.H., Kjeldsen P., Bjerg P.L., Jensen D.L., Christensen J.B., Baun A., Albrechtsen H.-J., Heron G., 2001. Biogeochemistry of landfill leachate plumes, Appl. Geochem., 16(7–8), 659–718.
  • 32. Christophersen T. H., Kjeldsen P., 2000 a. Field investigations of methane oxidation in soil adjacent to an old landfill, Intercontinental Landfill Research Symposium, Luleå University of Technology, Luleå, Sweden, 1–8.
  • 33. Christophersen T. H., Kjeldsen P., 2000 b. Factors governing lateral gas migration and subsequent emission in soil adjacent to an old landfill, Intercontinental Landfill Research Symposium, Luleå University of Technology, Luleå, Sweden, 1–8.
  • 34. Christophersen M., Kjeldsen P., 2001. Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration, Waste Manag Res., 19(2), 144–159.
  • 35. Christophersen M, Kjeldsen P, Holst H, Chanton J., 2001. Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation, Waste Manag Res., 19(6), 595–612.
  • 36. Clark I.D., Fritz P., 1997. Environmental Isotopes in Hydrogeology, Lewis Publishers, New York.
  • 37. Clark I., 2015. Groundwater Geochemistry and Isotopes, CRC Press, Taylor & Francis.
  • 38. Cloutier V., Lefebvre R., Savard M.M., Bourque E., Therrien R., 2006. Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada, Hydrogeol. J., 14(4), 573–590.
  • 39. Clymo R.S., Pearce D.M.E., 1995. Methane and Carbon Dioxide Production in Transport through and Efflux from a Peatland Philosophical Transactions: Physical Sciences and Engineering, 351, 249–259.
  • 40. Clymo R.S., Williams M.M.R., 2012. Diffusion of gases dissolved in peat pore water. Mires and Peat, 10(6), 1–10.
  • 41. Coleman D.D., Liu C.L., Hackley K.C., Benson L.J., 1993. Identification of landfill methane using carbon and hydrogen isotope analysis. Proceedings of 16th International Madison Waste Conference, Municipal & Industrial Waste, Dept. of Engineering Professional Development, Univ. of Wisconsin Madison, 303–314.
  • 42. Conrad R., 1989. Control of Methane Production in Terrestrial Ecosystems, In: Andreae, M.O. and Schimel, D.S., Ed., Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, John Wiley, New York, 39–58.
  • 43. Conrad R. 2005. Quantification of Methanogenic Pathways Using Stable Carbon Isotopic Signatures: A Review and a Proposal. Organic Geochemistry, 36, 739–752.
  • 44. Cozzarelli J.M., Suflita J.M., Ulrich G.A., Harris S.H., Scholl M.A., Schlottman J.L., Christenson S., 2000. Geochemical and Microbiological Methods for Evaluating Anaerobic Processes in an Aquifer Contaminated by Landfill Leachate. Environ. Sci. Technol., 34, 4025–4033.
  • 45. Cozzarelli I.M., Böhlke J.K., Masoner J., Breit G.N., Lorah M.M., Tuttle M.L.W., Jaeschke J.B., 2011. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma. Ground Water. 49(5), 663–687.
  • 46. Darling W., Bath A.H., Gibson J.J., Różański K., 2005, W: Leng M.J. (red.). Isotopes in Palaeoenvironmental Research. Springer, Dordrecht, The Netherlands.
  • 47. Deines P., Langmuir D., Harmon R.S., 1974. Stable isotope ratios and the existence of a gas phase in the evolution of carbonate groundwaters, Geochim. Cosmochim. Acta, 38: 1147–1164.
  • 48. Deines P., 1980. The isotopic composition of reduced organic carbon, W: Fritz P., Fontes J.C., (red.). Handbook of Environmental Isotope Geochemistry. Elsevier, vol. 1, 329–406.
  • 49. Deutsch W.J., 1997. Groundwater geochemistry: fundamentals and applications to contamination. Taylor & Francis, Inc.
  • 50. Doctor D.H., Alexander Jr.E.C, Petrič M., Kogovšek J., Urbanc J., Lojen S., Stichler W., 2006. Quantification of karst aquifer discharge components during storm events through end-mem ber mixing analysis using natural chemistry and stable isotopes as tracers, Hydrogeology Journal, 14(7), 1171–1191.
  • 51. Drever J.I., 1982. The Geochemistry of natural waters, Prentice Hall, Inc, Englewood Clifs, Printed in the United States of America.
  • 52. Dudziak A., Hałas S., 1996 a. Influence of freezing and thawing on the carbon isotope composition in soil CO2, Geoderma, 69, 209–216.
  • 53. Dudziak A., Hałas S., 1996 b. Diurnal cycle of carbon isotope ratio in soil CO2 in various ecosystems. Plant and Soil, 183, 291–299.
  • 54. Duliński M., Kapusta M., Karpińska-Rzepa A., Różański K., Witczak S., 2007. Ewolucja składu izotopowego węgla (13C/12C, 14C/12C) rozpuszczonych węglanów w strefie aeracji [w:] Współczesne problemy hydrogeologii, Kraków, t. 13, cz. 2, 65–74.
  • 55. Farquhar G.J., Rovers F.A., 1973. Gas production during refuse decomposition, Air, Water and Soil Pollution, 2(4), 483–495.
  • 56. Faure G., 1986. Principles of Isotope Geology, II ed., John Wiley and Sons, New York.
  • 57. Fetter C.W., 1994. Applied hydrogeology, Prentice Hall, Inc A. Simon & Schuster Company Englewood Clifs, New Jersey USA.
  • 58. Galand P.E, Yrjälä K., Conrad R., 2010. Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems, Biogeosciences, 7, 3893–3900.
  • 59. Goni I.B., 2006. Tracing stable isotope values from meteoric water to groundwater in the southwestern part of the Chad basin, Hydrogeology Journal, 14(5), 742–752.
  • 60. Górka M., Sauer P.E., Lewicka-Szczebak D., Jędrysek M.O., 2011. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2, Environ. Pollut. 159, 294–301.
  • 61. Grossman E.L., 1997. Stable carbon isotopes as indicators of microbial activity in aquifers, In: Hurst C.I. (ed) Manual of environmental microbiology. American Society for Microbiology, Washington D C, 565–576.
  • 62. Grossman E.L., Cifuentes L.A., Cozzarelli I.M., 2002. Anaerobic methane oxidation in a landfill-leachate plume, Environ. Sci. Technol., 36(11), 2436–2442.
  • 63. Haarstad K., Mæhlum T., 2013. Tracing solid waste leachate in groundwater using δ13C from dissolved inorganic carbon. Isotopes Environ Health Stud. 9(1), 48–61.
  • 64. Hackley K.C., Liu C.L., Coleman D.D., 1996. Environmental. isotope characteristics of landfill leachates and gases, Ground Water, 34, 827–836.
  • 65. Hakala J.A., 2014. Use of stable isotopes to identify sources of methane in Appalachian Basin shallow groundwaters: a review, Environ. Sci. Processes Impacts, 16, 2080–2086.
  • 66. Hanson P.J., Edwards N.T., Garten C.T., Andrews J.A., 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations, Biogeochemistry, 48, 115–146.
  • 67. 67.Hedge U., Chang T-Ch., Yang S-S., 2003. Methane and carbon dioxide emission from Shan-Chu-Ku landfill site in northern Taiwan. Chemosphere, 52, 1275–1285.
  • 68. Hellings L., Dehairs F., Tackx M., Keppens E., Baeyens W., 1999. Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition, Biogeochemistry, 47, 167–186.
  • 69. Hellings L., Van Den Driessche K., Baeyens W., Keppens E., Dehairs F., 2000. Origin and Fate of Dissolved Inorganic Carbon in Interstitial Waters of Two Freshwater Intertidal Areas: A Case Study of the Scheldt Estuary, Belgium. Biogeochemistry, Vol. 51, No. 2, 141–160.
  • 70. Hornibrook E.R.C., Longstaffe F.J., Fyfe W.S., 2000a. Factors influencing stable-isotope ratios in CH4 and CO2 within subenvironments of freshwater wetlands: implications for δ-signatures of emissions, Isotopes in Environment. and Health Studies, 36, 151–176.
  • 71. Hornibrook E.R.C., Longstaffe F.J., Fyfe W.S., 2000b. Evolution of stable carbon-isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments, Geochimica et Cosmochimica Acta, 64, 1013–1027.
  • 72. Hossler K., Bauer J.E., 2013. Amounts, isotopic character, and ages of organic and inorganic carbon exported from rivers to ocean margins: 1. Estimates of terrestrial losses and inputs to the Middle Atlantic Bight, Global Biogeochem. Cycles, 27.
  • 73. Jędrysek M.O., 1995. Carbon isotope evidence for diurnal variations in methanogenesis in freshwater lake sediments., Geochim. Cosmochim. Acta, 59, 557–561.
  • 74. Jędrysek M.O., 2005. Depth of the water column in relation to carbon isotope ratios in methane in freshwater sediments, Geological Quarterly, 49, 151–164.
  • 75. Jędrysek M.O., Hałas S.., Pieńkos T., 2014. Carbon isotopic composition of early-diagenetic methane: variations with sediments depth, Annales UMCS, Physica, 69, 29–52.
  • 76. Kanduč T., 2008. Hydrogeochemical characteristics of the River Idrijca (Slovenia) GEOLOGIJA, 51/1, 39–49.
  • 77. Kerfoot H.B., Baker J.A., Burt D.M., 2003. The use of isotopes to identify landfill gas effect on groundwater, J. Environ. Monit. 5, 896–901.
  • 78. Kjeldsen P., Barlaz M.A., Rooker A.P., Baun A., Ledin A., Christensen T.H., 2002. Present and Long Term Composition of MSW Landfill Leachate – A Review, Critical Reviews in Environmental Science and Technology, 32(4), 297–336.
  • 79. Kuc T., Zimnoch M., 1994. Evolution of isotopic composition and concentration of atmospheric CO2 as result of anthropogenic influences, Geograph. Pol., 62, 61–72.
  • 80. Kuc T., Zimnoch M., 1998. Changes of the CO2 sources and sinks in a polluted urban area (Southe Poland) over the last decade, derived from the carbon isotope composition, Radiocarbon, 40, 417–423.
  • 81. Kuc T., Różański K., Nęcki J.M., Zimnoch M., Korus A., 2003. Antropogenic emission of CO2 and CH4 in an urban environment, Applied Energy, 75(3,4), 193–203.
  • 82. Lee E.S., Krothe N.C., 2001. A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem. Geol. 179, 129–143.
  • 83. Leng M.J.red. 2006. Isotopes in Palaeoenvironmental Research, 10, Springer, Netherland.
  • 84. Li S-L., Liu C-Q., Tao F-X., Lang Y-C., Han G-L., 2005. Carbon Biogeochemistry of Ground Water, Guiyang, Southwest China, Ground Water, 43(4), 494–499.
  • 85. Lojen S., Ogrinc N., Dolenec T., 1999. Decomposition of sedimentary organic matter and methane formation in the recent of Lake Bled (Slovenia), Chemical Geol., 159, 223–240.
  • 86. Lorah M.M., Cozzarelli I.M., Böhlke J.K., 2009. Biogeochemistry at a wetland sediment alluvial aquifer interface in a landfill leachate plume, J. Contam. Hydrol., 105, 99–117.
  • 87. Luo Y., Zhou X., 2006. Soil Respiration and the Environment, Elsevier, USA
  • 88. Małecki J.J., 1998. Rola strefy aeracji w kształtowaniu składu chemicznego płytkich wód podziemnych wybranych środowisk hydrogeochemicznych, Biuletyn PIG, 381, 1–219.
  • 89. Manning D., 2001. Calcite precipitation in landfills: an essential product of waste stabilization, Mineralogical Magazine, 65(5), 603–610.
  • 90. Mohammadzadeh H., Clark I., Marschner M., St- Jean G., 2005. Compound Specific Isotopic Analysis (CSIA) of landfill leachate DOC components, Chem. Geol., 218, 3–13.
  • 91. Mook W.G., Bommerson J.C., Staverman W.H., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–76.
  • 92. Mook W.G., Tan F.C., 1991. Stable carbon isotopes in rivers and estuaries, chapter 11, IN: Biogeochemistry of Major World Rivers, Degens E.T., Kempe S., Richey J.E. (Eds), John Wiley and Sons, New York.
  • 93. Mook W.G (red), 2000. Environmental isotopes in the hydrological cycle. Principles and applications. vol. I. Introduction – theory, methods, reviev, Technical Documents in Hydrology, No. 39, Vol. I, UNESCO, Paris, 1–280.
  • 94. Mook W.G (red), 2001. Environmental isotopes in the hydrological cycle. Principles and applications. vol. II. Atmospheric Water. Technical Documents in Hydrology, No. 39, Vol. II UNESCO, Paris, 1–113.
  • 95. Morris B.L., Darling W.G., Gooddy D.C., Litvak R.G., Neumann I., Nemaltseva E.J., Poddubnaia I., 2005. Assessing the extent of induced leakage to an urban aquifer using environmental tracers: an example from Bishkek, capital of Kyrgyzstan, Central Asia, Hydrogeology Journal, 14(1–2), 225–243.
  • 96. Myrbo A., Shapley M.D., 2006. Seasonal water-column dynamics of dissolved inorganic carbon stable isotopic compositions (δ13CDIC) in small hardwater lakes in Minnesota and Montana, Geochim. Cosmochim. Acta, 70, 2699–2714.
  • 97. Nastev M., Therrien R., Lefebvre R., Gelinas P., 2001. Gas production and migration in landfills and geological materials, Journal of Contaminant Hydrol, 52, 187–211.
  • 98. Nęcki J.M., Chmura Ł., Zimnoch M., Różański K., 2013. Impact of Emissions on Atmospheric Composition at Kasprowy Wierch Based on Results of Carbon Monoxide and Carbon Dioxide Monitoring, Pol. J. Environ. Stud., 22(4), 1119–1127.
  • 99. Nicholson R.V., Cherry J.A., Reardon E.J., 1983. Migration of contaminants in groundwater at a landfill: A case study. 6. Journal of Hydrology, 63(1–2), 131–176.
  • 100. North J.C., Frew R.D., Peake B.M., 2004. The use of carbon and nitrogen isotope ratios to identify landfill leachate contamination: Green Island Landfill, Dunedin, New Zealand, Environment International, 30(5), 631–637.
  • 101. North J.C., Frew R.D., Van Hale R., 2006. Can stable isotopes be used to monitor landfill leachate impact on surface waters? J. Geochem. Explor. 88, 49–53.
  • 102. North J.C., Frew R.D., 2008. Isotopic characterization of leachate from seven New Zealand landfills. In: Landfill Res. Focus. E. Lehmann, Ed. NOVA Publishing. 199–261.
  • 103. Nozhevnikova A., Lifshitz A.B., Lebedev V.S., Zavarzin G.A., 1993. Emission of methane into the atmosphere from landfills in the former USSR. Chemosph. 26, 401–417.
  • 104. Ogrinc N., Lojen S., Faganeli J., 1997. The source of dissolved inorganic carbon in pore waters of lacustrine sediment, Water Air Soil Pollut., 99, 333–341.
  • 105. Ogrinc N., Lojen S., Faganeli J., 2002. A mass balance of carbon stable isotopes in an organic-rich methane-producing lacustrine sediment (Lake Bled, Slovenia), Global and Planetary Change, 33, 57–72.
  • 106. O’Leary M.H., 1988. Carbon isotopes in photosynthesis, BioScience, 38, 328–336.
  • 107. Palmer S.M., Hope D., Billett M.F., Dawson J.J.C., Bryant C.L., 2001. Sources of organic and inorganic carbon in a headwater stream: Evidence from carbon isotope studies, Biogeochemistry, 52, 321–338.
  • 108. Pelak A.J., Sharma S., 2015. Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development, Environmental Pollution, 195, 91–100.
  • 109. Pilla G., Sacchi E., Zuppi G., Braga G., Ciancetti G., 2006. Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po plain, South-Western Lombardy, Italy, Hydrogeology Journal, 14(5), 795–808.
  • 110. Porowska D., 2015a. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes. Waste Management, 39, 216–225.
  • 111. Porowska D., 2015b. Możliwości wykorzystania oznaczeń izotopowych węgla do oceny zanieczyszczenia fazy gazowej środowiska przyrodniczego, Inż. Ekol., 44, 68–76.
  • 112. Porowska D., Leśniak P.M., 2008. Identyfikacja procesów kształtujących skład chemiczny wód podziemnych poniżej torfowiska – Pożary, Kampinoski Park Narodowy, Przegl. Geol., 56(11), 982–990.
  • 113. Poulson S.R., Ohmoto H., Ross T.P., 1995. Stable isotope geochemistry of waters and gases (CO2, CH4) from the overpressured Morganza and Moore-Sams fields, Louisiana Gulf Coast, Applied Geochemistry, 10(4), 407–417.
  • 114. Prinzhofer A., Battani A., 2003 Gas Isotopes Tracing: an Important Tool for Hydrocarbons Exploration, Oil & Gas Science and Technology, 58(2), 299–311.
  • 115. Rachor I., Gebert J., Gröngröft A., Pfeiffer E.M., 2011. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Manag., 31(5), 833–842.
  • 116. Reddy K.R., DeLaune R.D., 2008. Biogeochemistry of Wetlands: Science and Applications, CRC Press, Taylor & Francis Group.
  • 117. Rees J.F., 1980. The fate of carbon compounds in the landfill disposal of organic matter, J. Chem. Tech. Biotechnol., 30, 161–175.
  • 118. Révész K.M., Breen K.J. Baldassare A.J., Burruss R.C., 2010. Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania: Applied Geochemistry, 25(12), 1845–1859.
  • 119. Révész K.M., Breen K.J. Baldassare A.J., Burruss R.C., 2012. Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania: Applied Geochemistry, 27(1), 361–375.
  • 120. Sanci R., Panarello H.O., 2015. Carbon and Hydrogen Isotopes as Tracers of Methane Dynamic in Wetlands. International Journal of Geosciences, 6, 720–728.
  • 121. Scientific Investigations Report 2007–5085 (http:// pubs.usgs.gov/sir/2007/5085/pdf/sir2007–5085. pdf) (korzystano 7.03.2016)
  • 122. Segers R., 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes, Biogeochemistry 41, 23–51.
  • 123. Sharma S., Mulder M.L., Sack A., Schroeder K., Hammack R., 2014. Isotope Approach to Assess Hydrologic Connections During Marcellus Shale Drilling, Groundwater, 52(3), 424–433.
  • 124. Shin W.J., Chung G.S., Lee D., Lee K.S., 2011. Dissolved inorganic carbon export from carbonate and silicate catchments estimated from carbonate chemistry and δ13CDIC, Hydrol. Earth Syst. Sci., 15, 2551–2560.
  • 125. Shoemaker J.K., Schrag D.P., 2010. Subsurface characterization of methane production and oxidation from a New Hampshire wetland, Geobiology, 8, 234–243.
  • 126. Singh S.K., Sarin M.M., France-Lanord C., 2005. Chemical erosion in the eastern Himalaya: Major ion composition of the Brahmaputra and δ13C of dissolved inorganic carbon, Geochim. Cosmochim. Acta, 69(14), 3573–3588.
  • 127. Sracek O., Hirata R., 2002. Geochemical and stable isotopic evolution of the Guarani Aquifer System in the state of São Paulo, Brazil, Hydrogeol. J., 10(6), 643–655.
  • 128. Sundh I., Nilsson M., Grynberg G, Svensson B.H., 1994. Depth distribution of microbial production and oxidation of methane in Sphagnum dominated peatlands. Microbial Ecology, 27, 253–265.
  • 129. Szaran J., 2000. Wahania koncentracji i składu izotopowego w atmosferycznym CO2, Przegl. Geol., 48(10), 941–946.
  • 130. Szaran J., Dudziak A., Trembaczowski A., Niezgoda H., Hałas S., 2005. Diurnal variations and vertical distribution of δ13C, and concentration of atmospheric and soil CO2 in a meadow site, SE Poland, Geological Quaterly, 49(2), 135–144.
  • 131. Telmer K., Veizer J., 1999. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives, Chemical Geol., 159, 61–86.
  • 132. Tobias C., Böhlke J.K., 2011. Biological and geochemical controls on diel dissolved inorganic carbon cycling in a low-order agricultural stream: Implications for reach scales and beyond. Chemical Geology, 283, 18–30.
  • 133. Valentine D.L., 2002. Biogeochemistry and microbial ecology of anaerobic methane oxidation: a review, Antonie van Leewenhoek, 81, 271–282.
  • 134. Van Breukelen B.M., Röling W.F.M., Groen J., Griffioen J., Van Verseveld H.W., 2003. Biogeochemistry and isotope geochemistry of a landfill leachate plume. J. Contam. Hydrol. 65, 245–268.
  • 135. Van Breukelen B.M., Griffioen J., 2004. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II). Mn(II), NH4, and CH4 oxidation, Journal of Contaminant Hydrology, 73, 181–205.
  • 136. Van Breukelen B.M., Griffioen J., Röling W.F.M., Van Verseveld H.W., 2004. Reactive transport modelling of biochemical processes and carbon isotope geochemistry inside in landfill leachate plume. J. Contam. Hydrol. 70, 249–269.
  • 137. VanGulck J.F., Rowe R.K., Rittmann B.E., Cooke A.J., 2003. Predicting biogeochemical calcium precipitation in landfill leachate collection systems, Biodegradation, 14(5), 331–346.
  • 138. Vogel J.C., Grootes P.M., Mook W.G., 1970. Isotope fractionation between gaseous and dissolved carbon dioxide. Zeitschrift für Physik, 230, 225–238.
  • 139. Wachniew P., 2006. Isotopic composition of dissolved inorganic carbon in a large polluted river: The Vistula, Poland, Chemical Geology, 233, 293–308.
  • 140. Wachniew P., Różański K., 1997. Carbon budget of a mid-latitude, groundwater-controlled lake: Isotopic evidence for the importance of dissolved inorganic carbon recycling, Geochim. et Cosmochim. Acta, vol. 61, 2453–2465.
  • 141. Waddington J.M., Roulet N.T., Swanson R.V., 1996 – Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. Journal of Geophysical Research: Atmospheres, 101, 22775–22785.
  • 142. Waldron S., Hall A.J., Fallick A.E., 1999. Enigmatic stable isotope dynamics of deep peat methane – Global Biogeochemical Cycles, vol. 13, nr 1, 93–100.
  • 143. Walsh D.C., LaFleur R.G., Bopp R.F., 1993. Stable carbon isotopes in dissolved inorganic carbon of landfill leachate. Ground Water Manage. 16, 153–167.
  • 144. Ward R.S., Williams G.M., Hills C.C., 1996. Changes in Major and Trace Components of Landfill Gas During Subsurface, Migration Waste Manage. and Research, 14, 243–261.
  • 145. Whalen S.C., Reeburgh W.S., Sandbeck., 1990. Rapid methane oxidation in a landfill cover soil, Applid and Environmental Microbiology, 56(11), 3405–3411.
  • 146. Whalen S.C. 2005. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environm. Engineering Science 22(1), 73–92.
  • 147. Whiticar M.J., Faber E., Schoell M., 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation – Isotope evidence. Geochim. Cosmochim. Acta, 50(5), 693–709.
  • 148. Whiticar M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314.
  • 149. Wimmer B., Hrad M., Huber-Humer M., Watzinger A., Wyhlidal S., Reichenauer T.G., 2013. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste. Waste Manage. 33(10), 2083–2090.
  • 150. Witczak S., Szklarczyk T., Kmiecik E., Szczepańska J., Zuber A., Różański K., Duliński M., 2007. Hydrodynamic modelling, environmental tracers and hydrochemistry of a confined sandy aquifer (Kędzierzyn-Głubczyce Subtrough, SW Poland), Geological Quarterly, 51(1), 57–66.
  • 151. Woltemate I., Whiticar M.J., Schoell M., 1984. Carbon and hydrogen isotopic composition of bacterial methane in a shallow freshwater lake, Limnol. Oceanogr., vol. 29, 985–992.
  • 152. Wynn J.G., Harden J.W., Fries T.L., 2006. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin, Geoderma, 131, 89–109.
  • 153. Zawadzki Z. (red.), 1999. Gleboznawstwo, Państw. Wyd. Rol. i Leś., Warszawa.
  • 154. Zhang S., Lu X.X. Sun H., Han J. Higgitt D.L., 2009. Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China, Science of the Tot. Environ., 407, 2796–2807
  • 155. Zhang Ch, Grossman E.L., Ammerman J.W., 1998. Factors influencing methane distribution in Texas groundwater, Ground Water, 36(1), 58–66.
  • 156. Zimnoch M., Nęcki J.M., Florkowski T., Neubert R.E.M., 2004. Diurnal variability of δ13C and δ18O of atmospheric CO2 in the urban atmosphere of Kraków, Poland, Isotopes in Environmental and Health Studies, 40(2), 129–143.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-581a5503-67cc-4084-a06d-8e111fdde64e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.