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COMPARISON OF TWO MODEL COUPLING METHODS FOR JOINT 

IDENTIFICATION 

An experimental identification of joint dynamic properties requires accurate models of the joined bodies and an 

appropriate model coupling method. The bodies to be coupled can be described by their mass, stiffness and 

damping matrices (M, K, C) or by receptance matrices. Each approach has its advantages and disadvantages.  

The receptance matrix method requires a high number of measurements. However the measured data can be used 

directly and no model identification is needed. The experimental identification of the M, K, C matrices feasible 

for creating precise coupled models is difficult. Therefore, an approach based on a verified FE model can be 

employed. The two methods of model identification and coupling are discussed using a case study of two bolted 

beams.  Several ways of the receptance matrices measurement simplification and their influence on the accuracy 

of the results are studied. The effect of noise, measured FRF peak accuracy and data filtering on the resulting 

coupled receptance matrix is studied as well. The results obtained by the receptance matrix method are compared 

to the results obtained by the method of coupling the verified FE models. It has been found that the method 

based on coupling the verified M, K, C matrices proves to be a more reliable approach, which will allow a more 

precise joint dynamic model identification in the next step. 

1. INTRODUCTION 

 High speed and accuracy requirements make machine tool designers carefully consider 

dynamic behavior of the machines as chatter instability and noise can result from machine’s 

poor dynamic properties. A commonly used tool in dynamics optimization is the finite 

element method (FEM) which can predict mode shapes, natural frequencies and frequency 

response functions (FRF). The problem is that there is no reliable way of predicting the 

machine damping due to unknown damping properties of joints between the machine tool 

parts. This makes prediction of amplitudes in FRFs and identification of the critical mode 

shapes difficult.  
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There are several sources of damping in machine tool: structural parts, linear guides, 

bearings, stationary joints etc. While damping in structural parts can be often modeled as 

proportional, damping in joints, bearings and linear guides (with rolling elements, 

hydrostatic, sliding) is more complex. 

A detailed summary of research of the joint properties can be found in [1]. There was 

active research concerned with the damping capacity of joints in 1960s and 1970s. Some 

expressions for the damping capacity have been proposed, however their general 

applicability has not been verified. 

In [2] a research focusing on bolted joint identification using FE models of the coupled 

parts and a set of springs representing the interface is presented. However, the disadvantage 

of this approach is that the set of discrete springs does not allow for capturing the interface 

complex behavior, including the translational and torsional cross-effects. Therefore,  

a modified approach is proposed in this paper considering the interface representation by the 

mass, damping and stiffness matrices 𝑴𝑰, 𝑪𝑰, 𝑲𝑰 or by the receptance matrix 𝑯𝑰. Parts to be 

joined can be described by either their receptance matrices 𝑯𝑺𝟏 and  𝑯𝑺𝟐 measured directly 

on the specimens (before they are bolted together) or by the mass, damping and stiffness 

matrices  𝑴𝑺𝒊, 𝑪𝑺𝒊, 𝑲𝑺𝒊. 

Accurate models of the coupled parts represent the main prerequisite for the joint 

identification method to deliver relevant results. Each of the approaches mentioned above 

for describing the part models has some advantages and drawbacks. Therefore, the main aim 

of this paper is to evaluate both approaches with respect to their robustness and precision.  

In the first section a general framework for the joint properties identification is 

introduced, followed by the description of the interface and parts representation methods 

and their discussion. A case study of a two beam structure is considered and used for the 

model verification. 

2. GENERAL FRAMEWORK FOR THE JOINT PROPERTIES IDENTIFICATION 

The task on joint properties identification is based on employing the coupled system 

mathematical model consisting from the models of flexible bodies joined with the interface 

model. As mentioned above, either receptance matrix representation or FE models of the 

parts to be coupled are considered. Similarly, the interface is represented by its mass, 

damping and stiffness matrices 𝑴𝑰, 𝑪𝑰, 𝑲𝑰., or by the receptance matrix 𝑯𝑰.  

Strategy to mathematical coupling the models and joint properties identification is 

presented considering the case of 𝑴, 𝑪, 𝑲 matrices. The first step in the identification 

process is coupling of the system matrices of two bodies 𝑴𝑺𝒊, 𝑪𝑺𝒊, 𝑲𝑺𝒊 and the interface 

matrices 𝑴𝑰, 𝑪𝑰, 𝑲𝑰. This is done using the coupling equations [3] in a way similar to global 

matrix assembly in FE software. The equations of motion of the coupled subsystem can be 

written as: 

 

𝑴𝑥̈ + 𝑪𝑥̇ + 𝑲𝑥 = 𝑓 + 𝑔 ( 1 ) 
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The matrices 𝑴, 𝑪, 𝑲  are diagonal matrices containing the subsystem matrices. 

Vectors 𝑓 and 𝑔 are column vectors containing the subsystem internal and external force 

vectors respectively. 

𝑴 = 𝑑𝑖𝑎𝑔(𝑀𝑆1, 𝑀𝑆2, 𝑀𝐼) 

𝑪 = 𝑑𝑖𝑎𝑔(𝐶𝑆1, 𝐶𝑆2, 𝐶𝐼) 

𝑲 = 𝑑𝑖𝑎𝑔(𝐾𝑆1, 𝐾𝑆2, 𝐾𝐼) 

𝑥 = [

𝑥𝑆1

𝑥𝑆2

𝑥𝐼

]  𝑓 = [

𝑓𝑆1

𝑓𝑆2

𝑓𝐼

] 𝑔 = [

𝑔𝑆1

𝑔𝑆2

𝑔𝐼

] ( 2 ) 

Compatibility condition (coupling equations) is expressed as  

𝑩𝑥 = 0 ( 3 ) 

where 𝑩 is Boolean since the interface degrees of freedom match. And the coupling 

equations are very simple 𝑥(𝑘) − 𝑥(𝑙) = 0. Equilibrium condition is given by 

𝑳𝑇𝑔 = 0, ( 4 ) 

where 𝑳 is Boolean matrix describing the relations among the interface forces. 𝑳 is null 

space of 𝑩. 

The matrices of coupled system 𝑴̃, 𝑪̃,  𝑲̃ and vector 𝑓 are expressed as 

𝑴̃ ≜ 𝑳𝑻𝑴𝑳 

𝑪̃ ≜ 𝑳𝑇𝑪𝑳 

𝑲̃ ≜ 𝑳𝑇𝑲𝑳 

𝑓 ≜ 𝑳𝑇𝑓 

( 5 ) 

The next step in the identification is comparison of FRFs of the coupled model and 

FRFs measured on the real bolted assembly. The correlation coefficient ( 6 ) can be used to 

describe agreement between calculated FRFs and FRFs measured on bolted specimens. 

𝑅 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑁

𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑁
𝑖=1 √∑ (𝑌𝑖 − 𝑌̅)2𝑁

𝑖=1

 
( 6 ) 

Value of the correlation coefficient can be then used as objective function for a genetic 

algorithm, which finds the best  𝑴𝑰, 𝑪𝑰, 𝑲𝑰 matrices. 

Compared to using the, 𝑪, 𝑲 matrices, receptance matrix (Fig. 1), representation of the 

joint properties features some advantages since the FE model identification can introduce 

additional errors to the interface identification process. Another advantage is elimination  

of the local deformations in the FE model nodes connected to spring damper elements 
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introduced in [2]. This allows for reduction in the number of interface nodes and could also 

lead to reduction of unknown parameters in the identification. 

 

Fig. 1. Coupling of receptance matrices HS1 and HS2 of two parts and the interface receptance matrix HI by LM FBS 

method to get receptance matrix of the assembly 

If the receptance matrices are used, is the receptance matrix of the interface 𝑯𝑰 

calculated from the 𝑴𝑰, 𝑪𝑰, 𝑲𝑰 matrices (Fig. 2). The measured matrices 𝑯𝑺𝒊 and the 

interface matrix 𝑯𝑰 are then coupled using Lagrange Multiplier Frequency Based 

Substructuring Method (LM FBS) [4]. It is actually the same coupling approach as 

described above, but in frequency domain. 

Fig. 2. Identification of joint properties 
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3. COUPLING USING RECEPTANCE MATRIX REPRESENTATION  

The key component of the interface identification method presented in the previous 

chapter is model coupling.  A study of receptence matrix coupling of a beam specimen was 

conducted to investigate accuracy of the receptance matrix representation and the coupling 

method.  While coupling the receptance matrices can eliminate errors during FE model 

identification and less interface nodes are necessary, there are some additional problems 

involved in this approach. The most important one is the need to measure many more 

frequency response functions (FRF).  In the case of six interface nodes Fig. 3 altogether 441 

FRFs are needed (6 nodes in the interface, 1 node to check the resulting FRF, 3 DOFs at 

each node ~ (7*3)^2 =441. Another problem is that some of these FRFs cannot be actually 

measured. It is obvious that point 4 for example cannot be hit in x direction when using  

a modal hammer to excite the specimen. The aim of this section is to investigate, which 

FRFs are really necessary, which could be omitted and what effect would omitting them 

have on the results. 

 

Fig. 3. Dimensions and coupling points of specimen A, material steel  

The study of the influence of FRFs in the single specimen receptance matrix 𝑯𝑺 on the 

FRFs in matrix 𝑯𝑪 coupled by LM FBS method was done with data obtained from a FEM 

model. The specimen A was coupled to another specimen A, at six nodes shown in Fig. 3. 

So the receptance matrices 𝑯𝑺𝟏 and 𝑯𝑺𝟐 are the same. 

The calculated 𝑯𝑺𝒊 matrices are coupled directly together without any interface model 

(same principle as shown in Fig. 2, just the interface is missing). The coupled models are 

compared to FE model of the assembly in which  are the interface nodes simply merged, so  

there is no interface influence either (number of merged nodes is much higher than six to 

eliminate influence of the local stiffness around them). All FRFs were created using modal 

synthesys with no damping, because damping ratio inserted to model before coupling would 

result in different unknown damping ratio of the coupled model. The simplifications 

mentioned above allow to asses influence of particular FRFs in the 𝑯𝑺𝒊 matrices on the 

FRFs in the 𝑯𝑪 matrix with minimum of other influences.  

Fig. 4 shows effect of the first simplification of the 𝑯𝑺𝒊 matrices on coupled FRF in  

z direction which is neglecting the x degree of freedom. It can be seen that the red curve 

corresponding to model coupled in all three degrees of freedom fits very well the FE 

coupled model (blue curve).  Neglecting the x degree of freedom (green curve) means that 

the properties in this direction cannot be identified directly and the results in the remaining 

two directions are influenced too.  

x 
y 

z 
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Frequency [Hz] 

Fig. 4. FRF uz1/Fz1 calculated from the FE assembly, models coupled by LM FBS in two degrees of freedom 

 and in three degrees of freedom 

 
Frequency [Hz] 

Fig. 5. FRF uz1/ Fz1 calculated from the FE assembly, and three models coupled by LM FBS with simplified 

receptance matrices  

Another option could be to replace some of the unmeasurable FRFs with other FRFs 

and set the rest to zeros. The FRFs ux/Fx can only be measured at points 1, 6 and 7. In the 

V1 variant of the 𝑯𝑺𝒊 matrices Fig.  were the unmeasurable diagonal FRFs at points 2, 3, 4 

and 5 simply replaced with FRFs measured at points 6 and 7, the rest was set to zero for all 

frequencies. It can be seen that this gives even worse results than simple omitting the x 

direction Fig. 5.  

In the V2 variant of the 𝑯𝑺𝒊 matrices Fig. 7 were the unmeasurable diagonal FRFs 

replaced the same way as in the V1 variant. Because the response matrix is symmetric (in 

theory least) most of the non-diagonal FRFs are substituted with their symmetric 

equivalents (ux1/ Fx5 =  ux5/Fx1). 

V3 
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Fig. 6. Receptance matrix V1,  - set to zeros,  - copied from node 6 and 7  

Those without a symmetric equivalent were set to zero (for example ux5/Fx4 and 

ux4/Fx5 are both unknown). V2 gives better agreement with the reference FEM model than 

V1, but not better than omitting the x direction and connecting the two receptance matrices 

just in two degrees of freedom. Problematic are especially new peaks occurring at higher 

frequencies. 

 

Fig. 7. Receptance matrix V2,  - set to zeros,  - copied from node 6 and 7 ,  - copied from corresponding 

columns  
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Another option is tested in the variant V3, which is the same as V2 except the 

unknown non-diagonal FRFs were not set to zero. They were substituted with FRFs 

measured at points 6 and 7 Fig. 8. The results are more or less the same as the results of V2.   

 

Fig. 8. Receptance matrix V3,  - set to zeros,  - copied from node 6 and 7 ,  - copied from corresponding 

columns  

Computational tests performed reveal, that copying the receptance matrix diagonal 

elements is not sufficient (V1) and using the non-diagonal elements, taking at the same time 

the advantage of their symmetry (V2, V3) is needed. However, it can be seen on the other 

hand that coupling using just the y and z directions provide also sufficiently precise results. 

3.1. COUPLING THE MEASURED RECEPTANCE MATRICES 

Response functions were measured on the part A used for theoretical analysis in the 

previous section (Fig. 3) and on part B (Fig. 9) which represents ideally joined bodies  

(A + A). The FRFs were measured in four points on the interface (2, 3, 6 and 7) and in the 

reference point 1. Lower number of interfacing points is justified by the purpose of the 

experiment which is to find out whether it is possible to get FRFs comparable to the ones 

measured on part B. 

Comparison of the FRF between the points 101 and 201 in the z direction measured on 

the part B and the FRF resulting from coupling the measured receptance matrices of the A 

part by the LM FBS method is show in Fig. 10. 

It can be seen that the coupled FRF is significantly affected by noise. It seems that the 

noise was actually magnified by the coupling method because the original FRFs were 

relatively smooth. Noisy were only the FRFs between different directions (uy/Fz, uz/Fy) 

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7
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1 Fx

1 Fy

1 Fz

2 Fx

2 Fy

2 Fz

3 Fx

3 Fy

3 Fz

4 Fx

4 Fy

4 Fz

5 Fx

5 Fy

5 Fz

6 Fx

6 Fy

6 Fz

7 Fx

7 Fy

7 Fz



66                                         Jindrich SUSEN, Matej SULITKA, Jaroslav SINDLER, Miroslav JANOTA 

 

which should have less influence on resulting FRF than the ones between the same 

directions. 

 

 

Fig. 9. Reference points of specimen B, single piece of steel in the shape of two assembled specimens A  

 
Frequency [Hz] 

Fig. 10. uz101/Fz101 measured on part B and calculated by FM FBS using receptance matrices measured on part A 

The FRFs in the receptance matrices HSi were smoothed by combination of signal 

filtering and system identification techniques to minimize the noise influence (Fig. 11)  

(Fig. 12). The comparison of the coupled and measured FRFs after smoothing the original 

FRFs is shown in Fig. 13. It can be seen that some resonance and anti-resonance peaks 

coincide with the measurement on the specimen B, while most of them don’t. 

 

Fig. 11. uz1/Fz1 measured on specimen A (raw data) and smoothed 
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Fig. 12. uy3/Fz1 measured on specimen A (raw data) and smoothed 

 

Fig. 13. uz101/Fz101 measured on part B and calculated by FM FBS from smoothed receptance matrices measured 

on part A 

Significant mismatch in the area up to the second resonance peak results probably 

from an insufficient smoothing and possible errors in the values of the smoothed FRF.  

The problem is probably caused by the FRFs between different directions (Fig. 12) which 

contain a lot more noise than those between the same directions (Fig. 11). High level  

of noise in these FRFs can always be expected because accelerometers are a lot less excited 

when impact of the modal hammer does not occur in its measuring direction.  

Another interesting thing is the presence of resonance peaks of the part A in the 

coupled FRF at cca 234Hz and 631Hz. The peaks are well preserved in the filtered FRFs  

of the single part (Fig. 11) but they didn’t cancel out after coupling (Fig. 13). The peaks are 

quite narrow so their presence may results from errors in the measured peak height. 
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4. COUPLING USING FE MODELS 

The results in the previous section have shown that use of the FRFs directly measured 

using part A and coupling those FRFs to get the coupled system FRF gives not fully reliable 

results. An alternative approach is to use FE models as a representation of the bodies to be 

coupled and fit them to the measured FRFs.  

Values of the resonance frequencies can relatively easily be matched by modifying the 

Young’s modulus and density of the FE model’s material. Match of the dynamic 

compliances is more difficult to achieve because it is related to damping. The first additional 

source of errors is the method used for damping ratios identification (using peak pick, circle 

fit, or any other method). The identified damping ratios can be used to estimate mass and 

stiffness proportional damping coefficients assuming Rayleigh damping model. Even if the 

damping is proportional it is unlikely that it will be perfectly described by just the two 

damping coefficients, hence more errors in the peak heights.  

An advantage of FE model fitting is the possibility to use the 𝑴𝑰, 𝑪𝑰, 𝑲𝑰  matrices in 

model coupling and availability of all FRFs in the 𝐻 matrix if the FRF based model 

coupling is to be used. 

 
Frequency [Hz] 

Fig. 14. FRF uz1/Fz1 measured on one part and the same FRF of a fitted reference FE model  

The FRF uz1/Fz1 measured on part A and the same FRF of the fitted model is shown 

in Fig. 14. It can be seen that the fit is relatively good in this case. The coupled fitted models 

are compared to the data measured on specimen B in Fig. 15. There are some differences in 

the peak heights, which are increasing with the frequency. This is probably caused by 

measurement errors. Slight deviations in the resonance frequencies may also be seen even if 

the part A fitted single FE model has matched the measured FRF very well.  

uz1/Fz1 

uz1/Fz1 
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Frequency [Hz] 

Fig. 15. FRF uz101/Fz101 measured on specimen B and calculated from fitted and coupled FE models 

5. CONCLUSION  

An approach of bolted joint identification is proposed considering the joint 

representation by either the full mass, stiffness and damping matrices or by the receptance 

matrix. Main prerequisite for relevant identification of the joint properties is represented by 

using a reliable method for describing the dynamic properties of the parts to be coupled.  

The study presented in the paper focuses on two methods – representation of the part 

properties by mass, stiffness and damping matrices, or by receptance matrices using a case 

of two beams coupling. Both approaches are suited for joint properties identification, as 

proposed in the paper. 

Receptance matrix representation gives an advantage that the frequency response 

functions measured can directly be used for mathematical coupling and consequent 

identification of the joint properties. However, significant difficulties are detected 

disallowing for a reliable application of this approach. First, many FRF measurements needs 

to be performed and second, measurement noise considerably affects the accuracy of the 

coupled FRFs. Contrary to this, an approach based on using the fitted FE models of the 

coupled parts to calculate the coupled system FRFs provides very good results both in terms 

of eigenfrequencies and dynamic compliances. 
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