PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of acoustic, electric and laser contactless displacement measurements applied to observe nonlinear behaviour of diaphragm movement in dynamic loudspeakers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dynamic loudspeakers introduce distortion into reproduced auditory signal, especially in case of operation with high power or low frequency. Assessment of distortion by measuring current of voice coil should allow to compensate or prevent the product of distortion. The paper contains a comparison of displacement capture by optical triangulation displacement sensor, acoustic signal acquired using microphone, voltage and current. In case of processing low frequency signals, acoustic signal captured by microphone is dominated by harmonics of the fundamental frequency, and the laser displacement sensor provides more accurate information about the diaphragm displacement. Harmonics recorded in current have the same character as the displacement signal for low frequency, but for frequencies above the resonance, acoustic signal is a better source of displacement information.
Rocznik
Strony
art. no. 2023203
Opis fizyczny
Bibliogr. 29 poz., il. kolor., fot., rys.
Twórcy
  • Department of Mechanics and Vibroacoustics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Department of Mechanics and Vibroacoustics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. M.A. Boer, A.G.J. Nijmeijer, H. Schurer, W.F. Druyvesteyn, C.H. Slump, O.E. Herrmann; Audibility of Nonlinear Distortion in Loudspeakers; Audio Engineering Society Convention Paper presented at the 104th Convention, Amsterdam, The Netherlands, 16-19 May 1998
  • 2. W. Klippel, S. Irrgang; Audio System Evaluation with Music Signals; Audio Engineering Society Convention, The Conference on Automotive Audio, Burlingame, San Francisco, CA, USA, 8-10 September 2017
  • 3. W. Klippel; Speaker Auralization - Subjective Evaluation of Nonlinear Distortion; Audio Engineering Society Convention; The 110th Convention, Amsterdam, The Netherlands, 12-15 May 2001
  • 4. N. Dourou, V. Bruschi, S. Spinsante, S. Cecchi; The Influence of Listeners’ Mood on Equalization-Based Listening Experience; Acoustics, 2022, 4, 746-763; DOI: 10.3390/acoustics4030045
  • 5. P. Yu, S. Zhang, X. Feng, Z. Liu, Y. Shen; Selecting Program Material by Audio Features for Low-Frequency Perceptual Evaluation of Loudspeakers; Appl. Sci., 11, 2021, 2302; DOI: 10.3390/app11052302
  • 6. W. Klippel, U. Seidel; Measurement of Impulsive Distortion, Rub and Buzz and other Disturbances; Audio Engineering Society Convention, The 114th Convention, Amsterdam, The Netherlands, 22-25 March 2003
  • 7. W. Klippel; The Nonlinear Large-Signal Transfer Characteristics of Electrodynamical Loudspeakers at Low Frequencies; Audio Engineering Society Convention, The 90th Convention, Paris, France, 19-22 February 1991
  • 8. W. Klippel; Tutorial: Loudspeaker Nonlinearities - Causes, Parameters, Symptoms; J. Audio Eng. Soc., 2006, 54(10), 907-939
  • 9. X. Tian, W. Liu, X. Feng, Y. Shen; Compensation of Nonlinear Distortion in Loudspeakers Considering Nonlinear Viscoelasticity of the Suspension; J. Audio Eng. Soc., 2021, 69(3), 204-210
  • 10. K. Iwai, Y. Kajikawa; Linearization of Dynamic Loudspeaker System Using Third-Order Nonlinear IIR Filter; Proceedings of the 20th European Signal Processing Conference (EUSIPCO 2012), Bucharest, Romania, 27-31 August 2012
  • 11. Y. Kajikawa; Linearization Ability Evaluation of Nonlinear Filters Employing Dynamic Distortion Measurement; Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22-27 May 2011
  • 12. H. Schneider, F. Agerkvist, A. Knott, M.A.E. Andersen; Investigation of Current Driven Loudspeakers; Audio Engineering Society Convention, The 138th Convention, Warsaw, Poland, 7-10 May 2015
  • 13. A.J.M. Kaizer; Modeling of the Nonlinear Response of an Electrodynamic Loudspeaker by a Volterra Series Expansion; J. Audio Eng. Soc., 1987, 35(6), 421-433
  • 14. D. Hernandez, Y.M. Yu, J. Huang; Nonlinear Parameters Identification of Moving Coil Miniature Loudspeakers; Proceedings of the 2nd International Conference on Frontiers of Sensors Technologies, Shenzhen, China, 14-16 April 2017
  • 15. W. Klippel, J. Schlechter; Measurement and Visualization of Loudspeaker Cone Vibration; Audio Engineering Society Convention, The 121st Convention, San Francisco, CA, USA, 5-8 October 2006
  • 16. M.C Bellini, L. Collini, A. Farina, D. Pinardi, K. Riabova; Measurements of Loudspeakers with a Laser Doppler Vibrometer and the Exponential Sine Sweep Excitation Technique; J. Audio Eng. Soc., 2017, 65(7/8), 600-612
  • 17. J. Moreno, H. Bog; Measurements of Loudspeaker Parameters Using a Laser Velocity Transducer - An Improved Method; Audio Engineering Society Convention, The 91st Convention, New York, USA, 4-8 October 1991
  • 18. J. Moreno, R. Medina; Measurement of Loudspeaker Parameters Considering a Better Fitting for the Mechanical Impedance - A Fast Way to Do It; Proceedings of the AES 51st International Conference, Helsinki, Finland, 22-24 August 2013
  • 19. J.C. Struck; ZFIT: A MATLAB Tool for Thiele-Small Parameter Fitting and Optimization; Audio Engineering Society Convention, The 129th Convention, San Francisco, CA, USA, 4-7 November 2010
  • 20. W. Geiger; Servo Control of Loudspeaker Cone Motion Using an Optical Linear Displacement Sensor; J. Audio Eng. Soc., 2005, 53(6), 618-524
  • 21. G. Pillonnet, E. Sturtzer, T. Rossignol, P. Tournier, G. Lemarquand; Distortion Improvement in the Current Coil of Loudspeakers; Audio Engineering Society Convention Paper presented at the 134th Convention, Rome, Italy, 4-7 May 2013
  • 22. A. Dobrucki, B. Merit, V. Lemarquand, G. Lemarquand; Modeling of the nonlinear distortion in electrodynamic loudspeakers caused by the voice-coil inductance; Proceedings of the 10ème Congrès Français d’Acoustique, Lyon, France, 12-16 April 2010
  • 23. W. Klippel; Direct Feedback Linearization of Nonlinear Loudspeaker Systems; Audio Engineering Society Convention, The 102nd Convention, Munich, Germany, 22-25 March 1997
  • 24. W. Klippel; Adaptive Nonlinear Control of Loudspeaker Systems; J. Audio Eng. Soc., 1998, 46(11), 939-954
  • 25. M.R. Bai, C.C. Lee; DSP-based Sensorless Velocity Observer with Audio Applications in Loudspeaker Compensation; Audio Engineering Society Convention Paper presented at the 118th Convention, Barcelona, Spain, 28-31 May 2005
  • 26. Instruction Manual optoNCDT 2300; https://www.micro-epsilon.com/download/manuals/man--optoNCDT-2300--en.pdf (accessed on 2023.02.15)
  • 27. Faital Pro 3EF25; https://faitalpro.com/en/products/LF_Loudspeakers/product_details/index.php?id=401000150 (accessed on 2022.12.08)
  • 28. A. Dobrucki; Constant Component of the Loudspeaker Diaphragm Displacement Caused by Non-Linearities; Audio Engineering Society Convention, The 84th Convention, Paris, France, 1-4 March 1988
  • 29. J.F. Lazar, P.M. Brunet; Reluctance Force Compensation for the Nonlinear Control of a Loudspeaker; Audio Engineering Society Convention, The 149th Convention, Online, 21-24 October 2020
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58163f39-40d8-4688-981f-ab61f397d546
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.