PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of ply angle on the burst pressure of composite pressure vessels by filament winding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A composite pressure vessel is an important structure in different applications including pipes, pipes under pressure and closed system pipes under high pressure and temperature such as gas pipelines and aircraft structures, because of the characteristics of polymer - a composite used as an alternative to heavy materials such as metal in the various applications, including the construction industry. The current work focuses on the study of strength phase orientation and their properties on the burst pressure strength and other parameters, which are very important in the design and manufacture of these vessels such as the selection of type of strength phase nylon 6, 6 and philosophy of mixing of the type of fiber with matrix material (epoxy). The work also includes the study of the effect of two layer angle ply (0, 90), (55, -55), (75, -75) and implements different material testing to evaluate the toughness and stiffness of these vessels and compare the experimental result with the theoretical result. A filament winding apparatus was designed and executed to manufacture different types of subjects according to these angle of ply nylon fiber. The mechanical tests (tensile test, drop test, pipe stiffness test, hydrostatic pressure test) were used to test the vessel. The results shown that the ply orientation (75, -75) has high (tensile strength, toughness, stiffness, impact and burst pressure) when compared with the results from other ply orientations. This shows that [75, -75] ply orientation is the optimal angle for the vessel. Tensile tests show that (75, -75) ply orientation samples have higher properties in two directions, longitudinal and transverse, when compared with other angles.
Rocznik
Tom
Strony
223--233
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • University of Babylon, Iraq
autor
  • University of Babylon, Iraq
  • University of Babylon, Iraq
  • Czestochowa University of Technology, Poland
Bibliografia
  • 1.Abdelbary, A., Abouelwafa, M. & El Fahham, I.M. (2014) Evaluation and prediction of the effect of load frequency on the wear properties of pre-cracked nylon 66. Friction 2(3), 240-254.
  • 2.Al-Habahbeh, O.M. & Al-Huniti, N.S. (2005) Composite Pressure Vessels in Petroleum Industry. Status and Outlook, February.
  • 3.Balya, B. (2004) Design and Analysis of Filament Wound Composite Tubes. December.
  • 4.Faramarzi, I. & Kashani, M. (2015) Improvements in tribological properties of polyamide 6 by application of aramid pulp. Iran Polym. J., 24, 329-335.
  • 5.Karpuz, P. & Alpay, A. (2005) Mechanical Characterization of Filament Wound Composite Tubes by Internal Pressure Testing, May.
  • 6.Kim, C.U., Kang, J.H., Hong, C.S. & Kim, C.G. (2005) Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm. Composite Structures, 67(4), 443-452.
  • 7.Mark, J.E. (ed.) (2007) Physical Properties of Polymers Handbook. 2nd Edition, Polymer Research Center and Department of Chemistry University of Cincinnati, Cincinnati, Ohio.
  • 8.Njuguna, J. (2016) Lightweight Composite Structures in Transport Design, Manufacturing, Analysis and Performance. Elsevier.
  • 9.Önder, A. (2007) First failure pressure of composite pressure vessels. Production of Composite Pressure Vessels, 100-115.
  • 10.Pihtili, H. (2009) An experimental investigation of wear of glass fibre-epoxy resin and glass fibre-polyester resin composite materials. European Polymer Journal, 45(1), 149-154.
  • 11.Reshma, A.J. (2017) Review on burst pressure analysis of laminated composite pressure vessels. International Research Journal of Engineering and Technology, 4(5), 2738-2742.
  • 12.Rubin, I. (1990) Handbook of plastic materials and technology. Wiley, New York.
  • 13.Saad, N., Al-Zubiedy, A. & Mahmood M. (2017) Improvement mechanism of fracture toughness of HDPE with mixing mechanism (Nano particle) for pipe application. International Journal of Applied Engineering Research (IJAER), 12, 24.
  • 14.Sikora, R., Flizikowski, J. & Al-Zubiedy, M.A. (1993) Effect of injection moulding parameters of toothed wheels and type of polyamide material on the kinematic gear ratio of a belt transmission with these wheels. International Polymer Science and Technology, 20, 4.
  • 15.Tiwari, N. (2015) Manufacturing of Thermoset Composites, 11.
  • 16.Vishwanath, B., Verma, A. & Kameswara Rao, C. (1992) Effect of matrix content on strength and wear of woven roving glass polymeric composites. Composite Science and Technology, 44(1), 77-86.
  • 17.Yousefpour, R. (2002) Epoxy Woven Composite Material for a Semi-Autonomous (Vol. 36).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58145e58-c480-462e-900c-0b41863cb614
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.