Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flowshop scheduling of construction processes with uncertain parameters

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
In the paper a construction scheduling problem – namely flowshop – with minimizing the sum of penalties for exceeding the deadline of building structures completion is considered. The problem is illustrated by the investment task concerning the implementation of twelve apartment buildings forming a part of a new housing estate. Uncertain parameters of the system are represented either by fuzzy numbers or random variables, whereas random variables have normal or the Erlang distribution. Since even the deterministic version of the problem is strongly NP-hard, the approximate algorithm based on the tabu search method was used to its solution. The performed computational experiments showed large solution resistance against any potential interference of parameters of the problem.
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab., wykr.
  • Wrocław University of Science and Technology, Faculty of Electronics, Department of Control Systems and Mechatronics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Telecommunications and Teleinformatics Department, Faculty of Electronics, Wrocław University of Science and Technology, Janiszewskiego 11-17, 50-372 Wrocław, Poland
  • [1] D. Arditi, O.B. Tokdemir, K. Suh, Scheduling System for Repetitive Unit Construction Using Line-of-Balance Technology, Department of Civil and Architectural Engineering, Illinois Institute of Technology, Department of Civil Engineering, Honan University, Honam, South Korea, 2002.
  • [2] W. Bożejko, M. Wodecki, On the theoretical properties of swap multimoves, Oper. Res. Lett. 35 (2) (2007) 227–231.
  • [3] W. Bożejko, M. Uchroński, M. Wodecki, The new golf neighborhood for the flexible job shop problem, Procedia Comput. Sci. 1 (2010) 289–296.
  • [4] W. Bożejko, Z. Hejducki, M. Wodecki, Applying metaheuristic strategies in construction projects management, J. Civil Eng. Manag. 18 (5) (2012) 621–630.
  • [5] W. Bożejko, P. Rajba, M. Wodecki, One machine scheduling problems with random due date and processing times, Bull. Polish Acad. Sci. Tech. Sci. 65 (2) (2017) 219–231.
  • [6] S.-M. Chen, F.H. Griffis, P.-H. Chen, L.-M. Chang, Simulation and analytical techniques for construction resource planning and scheduling, Autom. Constr. 21 (2012) 99–113.
  • [7] A. Czarnigowska, A. Sobotka, Time–cost relationship for predicting construction duration, Arch. Civil Mech. Eng. 13 (4) (2013) 518–526.
  • [8] B.C. Dean, Approximation algorithms for stochastic scheduling problems, PhD thesis, MIT, 2005.
  • [9] K. El-Rayes, O. Moselhi, Optimal resource utilization for repetitive construction projects, J. Constr. Eng. Manag. ASCE 127 (1) (2001) 18–27.
  • [10] J. Grabowski, M. Wodecki, A very fast tabu search algorithm for the permutation flow shop problem with makespan criterion, Comput. Oper. Res. 31 (2004) 1891–1909.
  • [11] S. Hasija, C. Rajendran, Scheduling in flowshop to minimize total tardiness of jobs, Int. J. Prod. Res. 42 (11) (2004) 2289–2301.
  • [12] KNR,;1; Regulation of the polish Minister of Infrastructure of 18 May 2004, Dz.U. No. 130, Item 1391.
  • [13] A. Jiang, A. Issa, M. Malek, Construction project cash flow planning using the Pareto optimality efficiency network model, J. Civil Eng. Manag. 17 (2011) 510–519.
  • [14] S.-S. Liu, C.-J. Wang, Optiminizing project selection and scheduling problems with time-dependent resourceconstructions, Autom. Constr. 20 (8) (2011) 1110–1119.
  • [15] S.-S. Liu, C.-J. Wang, Optimizing linear project scheduling with multi-skilled crews, Autom. Constru. 24 (2012) 16–23.
  • [16] C.-J. Mattila, A. Park, Comparison of linear scheduling model and repetitive scheduling method, J. Constr. Eng. Manag. 129 (1) (2003) 56–64.
  • [17] M. Nawaz, E.E. Enscore, I. Ham, A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem, OMEGA 11 (1) (1983) 91–95.
  • [18] G. Onwubolu, D. Davendra, Scheduling flow shop using differential evolution algorithm, Eur. J. Oper. Res. 171 (2006) 674–692.
  • [19] C. Rajendran, H. Ziegler, Scheduling to minimize the sum of weighted flowtime and weighted tardiness of jobs in a flowshop with sequence-dependent setup times, Eur. J. Oper. Res. 147 (3) (2003) 513–522.
  • [20] B.R. Sarker, P.J. Egbelu, T.W. Liao, J. Yu, Planning and design models for construction industry: a critical survey, Autom. Constr. 22 (2012) 123–134.
  • [21] E. Taillard, Benchmarks for basic scheduling problems, Eur. J. Oper. Res. 64 (1993) 278–285.
  • [22] M. Wodecki, A block approach to earliness-tardiness scheduling problems, Int. J. Adv. Manuf. Technol. 40 (2009) 797–807.
  • [23] E. Vallada, R. Ruiz, G. Millea, Minimizing total tardiness in the m-machine flowshop problem: a review and evaluation heuristics and metaheuristics, Comput. Oper. Res. 35 (4) (2008) 1350–1373.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.