PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On representative functions method for clustering of 2D contours with application to pottery fragments typology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate clustering of 2D contours which represent cross-sections of rotationally symmetric objects. We propose modifications of the existing representations of digitized 2D contours and similarity measures. In particular, we represent each of the investigated objects as a single number and two functions and we use the DTW distance to measure their similarity. We apply our method to clustering of pottery fragments.
Rocznik
Strony
85--108
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warszawa, Poland
autor
  • Warsaw University of Technology, Faculty of Mathematics and Information Science, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] AMANATIADIS, A., KABURLASOS, V.G, GASTERATOS A., and PAPADATIS, S.E. (2011) Evaluation of shape descriptors for shape-base image retirieval. IET Image Process, Special issue on Imaging Systems and Techniques 5 (5), 493–8499.
  • [2] ARICA, N. and YARMAN-VURAL, F.T. (2003) A Compact Shape Descriptor Based on the Beam Angle Statistics. Image and Video Retrieval, Springer, 152–162.
  • [3] ARONOV, B., HAR-PELED, S., KNAUER, C., WANG, Y. and WENK, C. (2006) Fréchet Distance for Curves, Revisited. Springer, Berlin Heidelberg.
  • [4] BANDYOPADHYAY, S. and SAHA, S. (2013) Unsupervised Classifcation. Similarity Measures, Classical and Metaheuristic Approaches, and Applications. Springer, Berlin Heidelberg.
  • [5] BELONGIE, S. and MALIK, J. (2000) Matching with Shape Context. IEEE Workshop on Contentbased Access of Image and Video Libraries (CBAIVL2000), IEEE Pubs., 20–26.
  • [6] BELONGIE, S. and MALIK, J. (2002) Shape Matching and Object Recognition Using Shape Context. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (24), 483–507.
  • [7] BINKOWSKI, T. A. and JOACHIMIAK, A. (2008) Protein functional surfaces: global shape matching and local spatial alignments of ligand binding sites. BMC Structural Biology 8 (1).
  • [8] BRIDLE, J. S. (1980) Pattern recognition techniques for speech recognition. Spoken Language Generation and Understanding, Springer Netherlands, Dordrecht, 129–145.
  • [9] CAO, F. (2003) Geometric curve evolution and image processing. Lecture Notes in Mathematics 1805. Springer.
  • [10] CAO, Y., and MUMFORD, D. (2002) Geometric structure estimates of axially symmetric pots from small fragments. Proc. of Int. Conf. on Signal Processing, Pattern Recognition and Applications. IASTED, 92-97.
  • [11] DO CARMO, M. P. (1976) Differential Geometry of Curves and Surfaces. Prentice Hall, Inc., Englewood Cliffs, New Jersey.
  • [12] FORSYTH, D.A, MUNDY, J.L., DI GESU, V. and CIPOLLA, R. (1999) Shape, Contour and Grouping in Computer Vision. Lecture Notes in Computer Science 1681, Springer-Verlag, Berlin Heidelberg.
  • [13] GARCÍA-ORDÁS, M.T., ALEGRE, E., GARCÍA-OLALLA, O. and GARCÍAORDÁS, D. (2013) Evaluation of different metrics for shape based image retrieval using a new contour points descriptor. Similarity Search and Applications: 6th International Conference, SISAP 2013, A Coruña, Spain, October 2-4, 2013, Proceedings. Springer Berlin Heidelberg, 141–150.
  • [14] GHOSH, D., DUBE, T. and SHIVAPRASAD, A.P. (2010) Script recognition – a review. IEEE Trans Pattern Anal Mach Intell 32 (12), 2142–2161.
  • [15] GILBOA, A., KARASIK, A., SHARON, I. and SMILANSKY, U. (2004) Towards computerized topology and classification of ceramics. Journal of Archaeological Science 35, 1148–1168.
  • [16] HRISTOV, V. and AGRE, G. (2013) A software system for classification of archaeologicalartefacts representedby 2D plans. Cybernetics and Information Technology 13 (2), 82–96.
  • [17] KAMPEL, M. and SABLATNIG, R. (2002) Computer aided classification of ceramics. In: F. Nicolucci, ed., Virtual Archaeology. Proc. of VAST 2000 Euroconference, Arezzo,. Oxford, BAR, International Series, 77–82.
  • [18] KAMPEL, M., SABLATNIG, R. and COSTA, E. (2001) Classification of archaeological fragments using profile primitives. In: S. Scherer, ed., Computer Vision, Computer Graphic and Photogrammetry - a Common Viewpoint. Proceedings of 25th AAPR Workshop, Schrifttenreihe der OCG, 147 151–158.
  • [19] KARASIK, A. and SMILANSKY, U. (2001) Computerized morphological classification of ceramics. Journal of Archaeological Science 38, 2644–2657.
  • [20] KARASIK, A. and SMILANSKY, U. (2008) 3D scanning technology as a standard archaeological tool for pottery analysis: Practice and theory. Journal of Archaeological Science 35 (5), 1148–1168.
  • [21] KIMMEL, R., SHAKED, D., KIRYATI, N. and BRUCKSTEIN, A.M. (1995).
  • [22] Skeletonization via distance maps and level sets. Computer Vision and Image Understanding 62 (3), 382–391.
  • [23] KOVALEVSKY, V. (2001) Curvature in digital 2D images. International Journal of Pattern Recognition and Artificial Intelligence 15, 1183–1200.
  • [24] LIU, H., LATECKI, L.J. and LIU, W. (2008) A unified curvature definition for regular, polygonal, and digital planar curves. International Journal of Computer Vision 80, 104–124.
  • [25] MAIZA, C. and GAILDRAT, V. (2005) Automatic classification of archaeological potsherds. The Eight th International Conference on Computer Graphics and Artificial Intelligence, 3IA’2005 , 11–12.
  • [26] MAKRIDIS, M. and DARAS, P. (2013) Automatic classification of archaeological pottery sherds. J. Comput. Cult. Herit. 5 (4), 15:1–15:21.
  • [27] MASOOD, A. and SARFRAZ, M. (2008) An efficient technique for capturing 2D objects. Computers & Graphics 32, 93–104.
  • [28] MASOOD, A. and SARFRAZ, M. (2009) Capturing outlines of 2d objects with bézier cubic approximation. Image and Vision Computing 27 (4), 704–712.
  • [29] MÜLLER, M. (2007) Information Retrieval for Music and Motion. Springer Science & Business Media. MOUNTJOY, P. A. (1999) Regional Mycenaean Decorated Pottery. Marie Leidorf.
  • [30] MUMFORD, D.(1991) Mathematical theories of shape: do they model perception? In: Proc. Conference 1570, Soc. Photo-optical & Ind. Engineers (SPIE), 2–10.
  • [31] PAL, S., GANGULY, P. and BISWAS, P.K. (2007) Cubic Bézier approximation of a digitized curve. Pattern Recognition, 40, 2730–2471.
  • [32] PARRACHO, P., NEVES, R. and HORTA, N. (2010) Trading in Financial markets using pattern recognition optimized by genetic algorithms.In:Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’10, 2105–2106, ACM, 2010.
  • [33] PICCOLI, C., APARAJEYA, P., PAPADOPOULOS, G. TH., BINTLIF, J., LEYMARIE, F., BES, P., POBLOME J., VAN DER ENDEN, M. and DARAS, P. (2015) Towards the automatic classification of pottery sherds: two complementary approaches. In: Across Space and Time. Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, 463–474.
  • [34] RAMSAY, J.O. and SILVERMAN, B.W. (2002) Functional Data Analysis. Methods and Case Studies. Springer.
  • [35] RUI, Y., SHE, A. C. and HUANG, T. S. (1996) Modified Fourier descriptors for shape representation – a practical approach, In: Proc. of First International Workshop on Image Databases and Multi Media Search. Amsterdam, The Netherlands.
  • [36] SABLATNIG, R., MENARD, CH. and KROPATSCH, W. (1998) Classifcation of archaeological fragments using a description language. In: Proceedings of European Association for Signal Processing (Eusipco) 1998, Island of Rhodos, Greece 2, 1097–1100.
  • [37] SARAGUSTI, I., KARASIK, A., SHARON, I. and SMILANSKY, U. (2005) Quantitative analysis of shape attributes based on contours and section profiles in artefact analysis. Journal of Archaeological Science, 32, 841–853.
  • [38] SARFAZ, M. and MASOOD, A. (2007) Capturing outlines of planar images using Bézier cubics. Computers & Graphics, 31, 719–729.
  • [39] SARFAZ, M., MASOOD, A. and ASIM, R. (2004) A web based system for capturing outlines of 2d objects. In: Proceedings of International Conference on Information & Computer Science, Dhahran, Saudi Arabia, 177–193.
  • [40] SEBASTIAN, T., KLEIN, P. and KIMIA, B. (2003) On aligning curves. IEEE trans. Pattern Anal. Machine Intell., 25(1), 116–125.
  • [41] SHARON, E. and MUMFORD D. (2006) 2D-shape analysis using conformal mapping. International Journal of Computer Vision, 70(1), 55–75.
  • [42] SMILANSKY, U., BEIT-ARIEH, I., KARASIK, A., SHARON, I. and GILBOA, A. (2010) Optimal choice of prototypes for ceramic typology. In: F. Nicolucci and S. S. Hermon, eds., Beyond the Artifact. Digital Interpretation of the Past. Proceedings of CAA2004, Prato 13–17 April 2004, 411–414.
  • [43] KŁOPOTEK,M.A. and WIERZCHOŃ, S.T. (2015)Algorithms of Cluster Analysis. Instytut Podstaw Informatyki PAN.
  • [44] WYLIE, T. (2013)The Discrete FréchetDistance with Applications. PhD thesis, Montana State University.
  • [45] WYLIE, T. and ZHU, W.B. (2014) Intermittent Map Matching with the Discrete Fréchet Distance, arXiv:1409.2456.
  • [46] YADAV, P. and YADAV, N. (2015) Handwriting Recognition System - A Review. International Journal of Computer Applications, 114(19), 36–40.
  • [47] ZHANG, D. and LU, G. (2003) Evaluation of MPEG-7 shape descriptors against other shape descriptors. Multimedia Systems, 9, 15–30.
  • [48] ZHANG, D. and LU, G. (2004) Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19.
  • [49] ZHANG, D. and LU, G. (2002) A comparative study of Fourier descriptors for shape representation and retrieval. In: Proc. of 5th Asian Conference on Computer Vision (ACCV), Springer, 646–651.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5811e53d-5d80-4cba-8d41-63afcaad8cf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.