PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Mechanical Properties of Structures Created with Use of Automatically Reinforced 3D Concrete Printing – Preliminary Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
3D concrete printing (3DCP) technology is a rapidly developing and promising technique for creating concrete structures. One of the main challenges of the 3DCP technology is the method of reinforcement, which should be integrated with the automated printing process, while maintaining the best mechanical properties important for the strength of the structure. The main reason to undertake the subject is low degree of automation in construction industry, which results in high cost of human labour, as well as high rate of accidents in process. The article proposes a technology for automatic reinforcement of concrete structures with glass fibres and epoxy resin. Maximum bending force tests of beams reinforced with the proposed method were carried out and compared with beams reinforced with commonly used methods. Although not being a article focused on DIC analysis, few images were presented to compare behaviour of non-reinforced beam with automatically reinforced one and to show cracking propagation of a chosen automatically reinforced beam. The proposed method of reinforcement in the 3DCP process enables full automation and constructions with high bending strength, simultaneously reducing the level of risk involved in conventional construction industry.
Twórcy
  • Institute of Aeronautics and Applied Mechanics (IAAM), Warsaw University of Technology
  • Institute of Aeronautics and Applied Mechanics (IAAM), Warsaw University of Technology
  • Institute of Aeronautics and Applied Mechanics (IAAM), Warsaw University of Technology
  • Institute of Aeronautics and Applied Mechanics (IAAM), Warsaw University of Technology
  • Institute of Aeronautics and Applied Mechanics (IAAM), Warsaw University of Technology
Bibliografia
  • 1. Jiang, F., Ma, J., Webster, C.J., Chiaradia, A.J., Zhou, Y., Zhao, Z. and Zhang, X., 2024. Generative urban design: A systematic review on problem formulation, design generation, and decision-making. Progress in planning, 180, 100795.
  • 2. Zhang, X., Wang, X., Du, S., Tian, S., Jia, A., Ye, Y., Gao, N., Kuang, X. and Shi, X., 2024. A systematic review of urban form generation and optimization for performance-driven urban design. Building and Environment, 111269.
  • 3. Pérez-Martínez, I., Martínez-Rojas, M. and Soto-Hidalgo, J.M., 2023. A methodology for urban planning generation: A novel approach based on generative design. Engineering Applications of Artificial Intelligence, 124, 106609.
  • 4. Zare, Z., Yeganeh, M. and Dehghan, N., 2022. Environmental and social sustainability automated evaluation of plazas based on 3D visibility measurements. Energy Reports, 8, 6280-6300.
  • 5. Zawidzki, M., 2016. Automated geometrical evaluation of a plaza (town square). Advances in Engineering Software, 96, 58-69.
  • 6. Li, J., Chen, M., Wu, W., Liu, B. and Zheng, X., 2021. Height map-based social force model for stairway evacuation. Safety Science, 133, 105027.
  • 7. Martinez-Gil, F., Lozano, M. and Fernández, F., 2017. Emergent behaviors and scalability for multi-agent reinforcement learning-based pedes- trian models. Simulation Modelling Practice and Theory, 74, 117-133.
  • 8. Zawidzki, M., Chraibi, M. and Nishinari, K., 2014. Crowd-Z: The user-friendly framework for crowd simulation on an architectural floor plan. Pattern Recognition Letters, 44, 88-97.
  • 9. Zawidzki, M., 2015. Retrofitting of pedestrian over- pass by Truss-Z modular systems using graph-theory approach. Advances in Engineering Software, 81, 41-49.
  • 10. Zawidzki, M., 2016. Optimization of multi-branch Truss-Z based on evolution strategy. Advances in Engineering Software, 100, 113-125.
  • 11. Herr, C.M. and Kvan, T., 2007. Adapting cellular automata to support the architectural design process. Automation in Construction, 16(1), 61-69.
  • 12. Herr, C.M. and Ford, R.C., 2016. Cellular automata in architectural design: From generic systems to specific design tools. Automation in Construction, 72, 39-45.
  • 13. Araghi, S.K. and Stouffs, R., 2015. Exploring cellular automata for high density residential building form generation. Automation in construction, 49, 152-162.
  • 14. Zawidzki, M., 2009. Implementing cellular automata for dynamically shading a building facade. Complex Systems, 18(3), 287.
  • 15. Zawidzki, M. and Fujieda, I., 2010. The prototyping of a shading device controlled by a cellular automaton. Complex Systems, 19(2), 157.
  • 16. .Pena, M.L.C., Carballal, A., Rodríguez-Fernández, N., Santos, I. and Romero, J., 2021. Artificial intelligence applied to conceptual design. A review of its use in architecture. Automation in Construction, 124, 103550.
  • 17. Chen, Q., de Soto, B.G. and Adey, B.T., 2018. Construction automation: Research areas, industry concerns and suggestions for advancement. Automation in construction, 94, 22-38.
  • 18. Tay, Y.W.D., Panda, B., Paul, S.C., Noor Mohamed, N.A., Tan, M.J., Leong, K.F. 3d printing trends in building and construction industry: a review. Virtual and Physical Prototyping 2017; 12(3): 261-276.
  • 19. Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., Wang, L., Ding, T., Duan, Z., Du, S. Largescale 3d printing concrete technology: Current status and future opportunities. Cement and Concrete Composites 2021; 122: 104115.
  • 20. Paul, S.C., Van Zijl, G.P., Tan, M.J., Gibson, I. A review of 3d concrete printing systems and materials properties: Current status and future research prospects. Rapid Prototyping Journal 2018.
  • 21. Bos, F., Wolfs, R., Ahmed, Z., Salet, T. Additive manufacturing of concrete in construction: potentials and challenges of 3d concrete printing. Virtual and physical prototyping 2016; 11(3): 209-225.
  • 22. Ma, G., Buswell, R., Silva, W.R.L., Wang, L., Xu, J., Jones, S.Z. Technology readiness: a global snapshot of 3d concrete printing and the frontiers for development. Cement and Concrete Research 2022; 156: 106774.
  • 23. Lyu, F., Zhao, D., Hou, X., Sun, L., Zhang, Q. Overview of the development of 3d-printing concrete: A review. Applied Sciences 2021; 11(21): 9822.
  • 24. Bai, W., Fang, H., Wang, Y., Zeng, Q., Hu, G., Bao, G., Wan, Y. Academic insights and perspectives in 3d printing: A bibliometric review. Applied Sciences 2021; 11(18): 8298.
  • 25. Nerella, V.N., Hempel, S., Mechtcherine, V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3d-printing. Construction and Building Materials 2019; 205: 586-601.
  • 26. Marchment, T., Sanjayan, J., Xia, M. Method of enhancing interlayer bond strength in construction scale 3d printing with mortar by effective bond area amplification. Materials & Design 2019; 169: 107684.
  • 27. Classen, M., Ungermann, J., Sharma, R. Additive manufacturing of reinforced concrete – develop- ment of a 3D printing technology for cementitious composites with metallic reinforcement. Applied Sciences 2020; 10(11): 3791.
  • 28. Kreiger, E.L., Kreiger, M.A., Case, M.P. Development of the construction processes for reinforced additively constructed concrete. Additive Manufacturing 2019; 28: 39-49.
  • 29. Baz, B., Aouad, G., Leblond, P., Al-Mansouri, O., d’Hondt, M., R´emond, S.: Mechanical assessment of concrete-steel bonding in 3d printed elements. Construction and Building Materials 2020; 256: 119457.
  • 30. Lim, S., Buswell, R.A., Le, T.T., Austin, S.A., Gibb, A.G., Thorpe, T. Developments in constructionscale additive manufacturing processes. Automation in construction 2012; 21: 262-268.
  • 31. Ivaniuk, E., M¨uller, S., Neef, T., Mechtcherine, V. Strategies for integrating reinforcement into 3D concrete printing at the tu dresden. In: Open Conference Proceedings 2022; 1: 23-34.
  • 32. Marchment, T., Sanjayan, J. Mesh reinforcing method for 3d concrete printing. Automation in Construction 2020; 109: 102992.
  • 33. Kloft, H., Empelmann, M., Hack, N., Herrmann, E., Lowke, D. Reinforcement strategies for 3D- concrete-printing. Civil Engineering Design 2020; 2(4): 131-139.
  • 34. Kim, Y.Y., Kong, H.-J., Li, V.C. Design of engineered cementitious composite suitable for wet-mixture shot-creting. Materials Journal 2003; 100(6): 511-518.
  • 35. Wu, Z., Memari, A.M., Duarte, J.P. State of the art review of reinforcement strategies and technologies for 3d printing of concrete. Energies 2022; 15(1): 360.
  • 36. Portnov, G., Bakis, C., Lackey, E., Kulakov, V. Frp reinforcing bars – designs and methods of manufacture (review of patents). Mechanics of Composite Materials 2013; 49: 381-400.
  • 37. Ceroni, F., Cosenza, E., Gaetano, M., Pecce, M. Durability issues of frp rebars in reinforced concreto members. Cement and Concrete Composites 2006; 28(10): 857-868.
  • 38. Afroughsabet, V., Biolzi, L., Ozbakkaloglu, T. High- performance fibre-reinforced concrete: a review. Journal of materials science 2016; 51: 6517–6551.
  • 39. Salet, T.A., Ahmed, Z.Y., Bos, F.P., Laagland, H.L. Design of a 3d printed concrete bridge by testing. Virtual and Physical Prototyping 2018; 13(3): 222-236.
  • 40. Ibrahim, H.M. Experimental investigation of ultimate capacity of wired meshreinforced cementitious slabs. Construction and Building Materials 2011; 25(1): 251-259.
  • 41. Song, P., Hwang, S. Mechanical properties of high-strength steel fibre-reinforced concrete. Construction and Building Materials 2004; 18(9): 669–673.
  • 42. Zollo, R.F. Fibre-reinforced concrete: an overview after 30 years of development. Cement and concreto composites 1997; 19(2): 107-122.
  • 43. Sun, J., Aslani, F., Lu, J., Wang, L., Huang, Y., Ma, G. Fibre-reinforced lightweight engineered cementitious composites for 3d concrete printing. Ceramics International 2021; 47(19): 27107-27121.
  • 44. Lawler, J., Wilhelm, T., Zampini, D., Shah, S. Fracture processes of hybrid fibrereinforced mortar. Materials and Structures 2003; 36: 197-208.
  • 45. Mechtcherine, V., Grafe, J., Nerella, V.N., Spaniol, E., Hertel, M., F¨ussel, U. 3d-printed steel reinforcement for digital concrete construction–manufacture, mechanical properties and bond behaviour. Construction and Building Materials 2018; 179: 125-137.
  • 46. Khoshnevis, B. Automated construction by contour crafting-related robotics and information technologies. Automation in construction 2004; 13(1): 5-19.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-580bff87-de95-42b5-93d4-d40a93b52450
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.