Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of the investigations of turbocharger shaft bearing using different kinds of lubrication conditions (dry friction and lubrication with different kind of oils). In particular, the wear of the turbocharger shaft surface was evaluated. One of the most frequent failures is the seizure of the turbocharger shaft in the slide bearing, causing its rotation, which leads to destruction of the assembly and costly repairs. On the basis of the conducted tests, it was found that the average value of representative breaks surface on the turbocharger shaft are reduced using of a less viscous oil. Similar situation was seen using new oil instead overworked oil – it had an influence on the value of diameter of breaks.
Czasopismo
Rocznik
Tom
Strony
85--95
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Silesian University of Technology, Faculty of Transport, Krasinskiego 8, 40-0119 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Transport, Krasinskiego 8, 40-0119 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Transport, Krasinskiego 8, 40-0119 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Transport, Krasinskiego 8, 40-0119 Katowice, Poland
Bibliografia
- 1. Mysłowski, J. Doładowanie silników. [In Polish: Engine boost]. Wydawnictwo Komunikacji i Łączności. Warszawa 2016.
- 2. Zając P. Silniki pojazdów samochodowych - część 2 – Układy zasilania, chłodzenia, smarowania dolotowe i wylotowe. [In Polish: Automotive engines - part 2 - Supply, cooling, intake and exhaust lubrication systems]. Wydawnictwo Komunikacji i Łączności. Warszawa 2010.
- 3. Padzillah, M.H. & Rajoo, S. & Martinez-Botas, R.F. Experimental and numerical investigation on flow angle characteristics of an automotive mixed flow turbocharger turbine. Jurnal Teknologi. 2015. Vol. 77. No. 8. P. 7-12.
- 4. Sendyka, B. & Filipczyk, J. Twin turbocharging system of medium displacement spark ignition engine. Combustion Engines. 2009. SC2. P. 264-268.
- 5. Dudziński, W. & Haimann, K. & Lachowicz, M. Struktura i własności materiałowe łożysk ślizgowych turbosprężarek wspołpracujących z silnikami spalinowymi. Tribologia. 2002. No. 4. P. 1133-1141. [In Polish: Structure and material properties of turbocharger slide bearings working with internal combustion engines.].
- 6. Chen, W.J. Rotordynamics and bearing design of turbochargers. Mechanical Systems and Signal Processing. 2012. Vol. 29. P. 77-89.
- 7. Mazurkow, A. The study of rotating units in turbochargers, the influence of relative clearance in siding bearings with a floating ring on static and dynamic properties. Scientific Problems of Machines Operation and Maintenance. 2009. Vol. 44. No. 1(157). P. 19-28.
- 8. Jaskolski, J. & Budzik, G. & Marciniec, A. Balancing of turbocharger rotors. Journal of KONES. 2007. Vol. 14. No. 2. P. 217-222.
- 9. Burkinshawa, M. & Blacker, D. The high temperature tribological performance of turbocharger wastegate materials. In: 11th International Conference on Turbochargers and Turbocharging. Institution of Mechanical Engineers. 2014. P. 289-298.
- 10. Yang, K. & Fletcher, K.A. & Styer, J.P. & Lam, W.Y. & Guinther, G.H.: Engine oil components effects on turbocharger protection and the relevance of the TEOST 33C test for gasoline turbocharger deposit protection. SAE International Journal of Fuels and Lubricants. 2017. Vol. 10. No. 3. P. 815-821.
- 11. Lee, W. & Schubert, E. & Li, Y. & Li, S. & Bobba, D. & Sarlioglu, B. Overview of electric turbocharger and supercharger for downsized internal combustion engines. IEEE Transactions on Transportation Electrification. 2017. Vol. 3. No. 1. P. 36-47.
- 12. Park, J.B. & Lee, J.I. & Ryu, J.H. Microstructure of titanium aluminide prepared by centrifugal investment casting for automotive turbocharger. Journal of Ceramic Processing Research. 2017. Vol. 18. No. 5. P. 399-403.
- 13. Deligant, M. & Podevin, P. & Descombes, G. Experimental identification of turbocharger mechanical friction losses. Energy. 2012. Vol. 39. No. 1. P. 388-394.
- 14. Chuepeng, S. & Saipom, S. Lubricant thermo-viscosity effects on turbocharger performance at low engine load. Applied Thermal Engineering. 2018. Vol. 139. P. 334-340.
- 15. Romagnoli, A. & Manivannan, A. & Rajoo, S. & Chiong, M. S. & Feneley, A. & Pesiridis, A. & Martinez-Botas, R.F. A review of heat transfer in turbochargers. Renewable and Sustainable Energy Reviews. 2017. Vol. 79. P. 1442-1460.
- 16. Moreira, M.F. Failure analysis in aluminium turbocharger wheels. Engineering Failure Analysis. 2016. Vol. 61. P. 108-118.
- 17. Zheng, X.Q. & Zhang, Y.J. & Yang, M.Y. Research and development on transonic compressor of high pressure ratio turbocharger for vehicle internal combustion engines. Science China-Technological Sciences. 2010. Vol. 53. No. 7. P. 1817-1823.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5806b244-de92-410d-b594-e9ebfd32439e