PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanovortex evolution in entrance part of the 2D open type long nanocavity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-equilibrium molecular dynamics method (NEMD) is applied to investigate a formation process of water nanovortex in 7 nm wide nanocavity (aspect ratio of which was equal to 3.6). The flow in the nanocavity was induced by Poiseuille 2D water nanoflow in a main nanochannel, to which the nanocavity is situated perpendicularly. The wall of main channel and the nanocavity is made from quartz. Flow is induced by applying constant force to molecules inside the main channel. Based on NEMD simulation data, the sequence of images representing water velocity vector fields was obtained at constant time intervals equal to 1 ns, which shows vortex formation mechanism. Flow field images analysis indicates that the shape and centre position of the nanovortex vary slightly each nanosecond, nevertheless, the structure remains stable in the flow field at the entrance to the nanocavity.
Rocznik
Strony
119--125
Opis fizyczny
Bibliogr. 42 poz., rys., wykr., tab.
Twórcy
autor
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Powstancow Warszawy 8 Av., 35-959 Rzeszow, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Powstancow Warszawy 8 Av., 35-959 Rzeszow, Poland
Bibliografia
  • [1] J.L.F. Abascal and C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005”, Journal of Chemical Physics 123(23), 234505 (2005).
  • [2] M.P. Allen and D.J. Tildeslaey: Computer simulation of Liquids, Clarendon press, Oxford, 1991.
  • [3] W.T. Ashurst, “Comments on Molecular cavity flow by Donald Greenspan”, Fluid Dynamics Research 29(3), 221–223 (2001).
  • [4] C. Braga and K.P. Travis, “A configurational temperature Nose-Hoover thermostat”, Journal of Chemical Physics 123(13), 134101 (2005).
  • [5] M. Cieplak, J. Koplik, and J.R. Banavar, “Molecular dynamics of ows in the Knudsen regime”, Physica A 287(1–2), 153–160 (2000).
  • [6] C.K. Chen and D.T.W. Lin, “TIP4P potential for lid-driven cavity flow”, Acta Mechanica 178(3–4), 223–237 (2005).
  • [7] M. Cheng and K.C. Hung, “Vortex structure of steady flow in a rectangular cavity”, Computers and Fluids 35(10), 1046–1062 (2006).
  • [8] M.W. Collins and C.S. Koenig: Micro and Nano Flow Systems for Bioanalysis, Springer, New York, 2013
  • [9] T.R. Cygan, J.J. Liang, and A.G. Kaliniche, “Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field”, Journal of Physical Chemistry B 108(4), 1255–1266 (2004).
  • [10] D. Greenspan, “The extraction of laminar flow from certain Brownian motions”, Computers and Mathematics with Applications 48(12), 1915–1928 (2004).
  • [11] T.A. Halgren, “The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters”, Journal of the American Chemical Society 114(20), 7827–7843 (1992).
  • [12] A. Haller, A. Spittler, L. Brandhoff, H. Zirath, D. Puchberger-Enengl, F. Keplinger, and M.J. Vellekoop, “Microfluidic Vortex Enhancement for on-Chip Sample Preparation”, Micromachines 6(2), 239–251 (2015).
  • [13] W. Humphrey, A. Dalke, and K. Schulten, “VMD – Visual Molecular Dynamics”, Journal of Molecular Graphics 14(1), 33–38 (1996).
  • [14] S.C. Hur, A.J. Mach, and D. Di Carlo, “High-throughput sizebased rare cell enrichment using microscale vortices”, Biomicrofluidics 2011b(5), 022206 (2011).
  • [15] G. Karniadakis, A. Beskok, and N. Aluru: Microflows and Nanoflows. Fundamentals and Simulation, Springer-Verlag, New York, 2005.
  • [16] A. Kordos and A. Kucaba-Pietal, “Computer simulation of nanoflows in chromatography columns”, Proceedings of the 35th IC ITI; ISBN 978‒953‒7138‒31‒8, (2013).
  • [17] A. Kordos: Modeling of hydrodynamics and mass transport in chromatographic columns using molecular dynamics simulation, PhD thesis, Rzeszow University of Technology, 2015.
  • [18] A. Kordos and A. Kucaba-Pietal, “Effect of wall material on water nanovortices formation in 2D long open type nanocavity. Molecular Dynamics study.”, Journal of Molecular Liquids, 251, 480–486 (2018)
  • [19] A. Kucaba-Pietal and A. Kordos, “Water nanovortices formation in 2D open type long nanocavities. Molecular dynamics study.”, Journal of Molecular Liquids, 249, 160–168 (2018)
  • [20] A. Kucaba-Pietal and A. Kordos, “Molecular Dynamic simulation of water flows in nanochannels with nanocavities. Vortices formation”, Proceedings of XXII Fluid Mechanics Conference, 11‒14. 09.2016, Slok/ Belchatow (2016).
  • [21] A. Kucaba-Pietal, Z.Walenta, and Z. Peradzynski, “Molecular dynamics computer simulation of water flows in nanochannels”, Bull. Pol. Ac.: Tech. 57(1), 55–56 (2009).
  • [22] A. Kucaba-Pietal, Z.A. Walenta, and Z. Peradzynski, “Water flows in copper and quartz nanochannels”, Mechanics of the 21th Century, Springer, Dordrecht, 2005.
  • [23] K.K. Jain: The Handbook of Nanomedicine, Springer, New York, 2012
  • [24] LAMMPS, Sandia National Laboratories, http://lammps.sandia.gov/
  • [25] T.M. Liou and C.T. Lin, “Three-dimensional rarefied gas flows in constricted microchannels with different aspect ratios: asymmetry bifurcations and secondary flows”, Microfluidics and Nanofluidics 18(2), 279–292 (2015).
  • [26] C. Liu and Z. Li, “Flow regimes and parameter dependence in nanochannel flows”, Physical Review E 80(3), 036302 (2009).
  • [27] A.J. Mach, J.H. Kim, A. Arshi, S.C. Hur, and D. Di Carlo, “Automated cellular sample preparation using a Centrifuge-on-a-Chip.”, Lab Chip 11(17), 2827–2834 (2011).
  • [28] J. Marchalot, Y. Fouillet, and J.L. Achard, “Multi-step microfluidic system for blood plasma separation: Architecture and separation efficiency.”, Microfluidics and Nanofluidics 17(1), 167–180 (2014).
  • [29] M.B. Mikkelsen, W. Reisner, H. Flyvbjerg, and A. Kristensen, “Pressure-Driven DNA in Nanogroove Arrays: Complex Dynamics Leads to Length- and Topology-Dependent Separation”, Nano Letters 11(4), 1598–1602 (2011)
  • [30] N. Osterman, J. Derganc, and D. Svensek, “Formation of vortices in long microcavities at low Reynolds number”, Microfluidics and Nanofluidics 20(2), 33 (2016).
  • [31] W. Reisnera, N.B. Larsend, H. Flyvbjergb, J.O. Tegenfeldtc, and A. Kristensenb, “Directed self-organization of single DNA molecules in a nanoslit via embedded nanopit arrays”, Proceedings of the National Academy of Sciences 106(1), 79–84 (2009)
  • [32] P. Sajeesh and A.K. Sen, “Particle separation and sorting in microfluidic devices: A Review”, Microfluidics and Nanofluidics 17(1), 1–52 (2014).
  • [33] F. Shen, P. Xiao, and Z. Liu, “Microparticle image velocimetry (mPIV) study of microcavity flow at low Reynolds number.”, Microfluidics and Nanofluidics 15(5), 1 (2015).
  • [34] A.A. Skelton, P. Fenter, J.D. Kubicki, D.J. Wesolowski, and P.T. Cummings, “Simulations of the Quartz(1011)/Water Interface: A Comparison of Classical Force Fields, Ab Initio Molecular Dynamics, and X-ray Reflectivity Experiments”, The Journal of Physical Chemistry C 115(5), 2076–2088 (2011).
  • [35] E. Sollier, M. Cubizolles, Y. Fouillet, and J.L. Achard, “Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices.”, Biomedical Microdevices 12(3), 485–497 (2010).
  • [36] M.W. Tysanner and A.L. Garcia, “Non-equilibrium behavior of equilibrium reservoirs in molecular simulations, International Journal of Numerical Methods in Fluids”, International Journal for Numerical Methods in Fluids 2050, 1–12 (2005).
  • [37] E.M. Wahba, “On the steady flow in a rectangular cavity at large Reynolds numbers: A numerical and analytical study”, European Journal of Mechanics B/Fluids 44, 69–81 (2014).
  • [38] Z.A. Walenta, A. Kucaba-Pietal, and Z. Peradzynski, “Fluid flows in narrow channels”, Journal Technical Physics 1, 65–70 (2009).
  • [39] Z.A. Walenta and A.M. Slowicka, “Structure of Shock Waves in Dense Gases and Liquids – Molecular Dynamics Simulation”, 20th International Shock Interaction Symposium, 20‒24 August 2012, Book of Proceedings, KTH Stockholm, Sweden, 215–218, (2012).
  • [40] A.G. Yew, D. Pinero, A.H. Hsieh, and J. Atencia, “ Low Peclet number mass and momentum transport in microcavities”, Applied Physics Letters 102(8), 084108 (2013).
  • [41] Z.T.F. Yu, Y.K. Lee, M. Wong, and Y. Zohar, “Fluid flows in microchannels with cavities”, Journal of Microelectromechanical Systems 14(6), 1386–1398 (2005).
  • [42] J. Zhou, S. Kasper, and I. Papautsky, “Enhanced size dependent trapping of particles using microvortices”, Microfluidics and Nanofluidics 15(5), 611–623 (2013).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5805055d-e635-4668-9e1d-159fb0e1f1db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.