PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Selected Factors on Erodibility in Catchment Scale on the Basis of Field Investigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drying of soil surface can affect the soil water repellency and reduce the infiltration, it may have impact on runoff and erosion. The aim of the research was to determine the effect of soil surface drying on its repellency and erosion, and the dependence of these values from the land use on the changing weather conditions background during the year. The research was conducted on Zagożdżonka river catchment, six times during the period of July 2014-September 2015, at five measuring points characterized by different land use. The irrigation of soil was carried out using rainfall simulator made by Eijkelkamp company. The intensity of the rain during the first 3 minutes of precipitation was 6 mm / min, the kinetic energy of rain was 72 J·m-2. The surface runoff was collected into containers placed in the bottom of the rainfall simulator. Water Drop Penetration Time test was used to determine soil surface wettability. WET-2 probe was used to measure the moisture and soil temperature. Sediment concentration in the effluent was determined by weight method on filters. Variability of soil wettability was observed in different dates of measurements. Increasing repellency was recorded during the dry periods. The highest class of repellency was found in the forest and wild meadow areas. There was no direct correlation between the soil moisture, soil temperature and runoff. Both, sediment concentrations and sediment grain size, varied in the collected samples, depending on measurement time. The highest sediment concentrations were found in runoff from agricultural land use.
Słowa kluczowe
Rocznik
Strony
256--267
Opis fizyczny
Bibliogr. 34 poz., tab., rys.
Twórcy
autor
  • Department of Hydraulic Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Laboratory – Water Center, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Environmental Improvement, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Laboratory – Water Center, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • 1. Banasik, K. 1994. Sedimentgraph model of rainfall event in a small agricultural watershed, Treaties and Monographs, Warsaw Agricultural University Press, Warsaw, pp. 119 (in Polish).
  • 2. Banasik K.,Górski D., Ignar S. 2000. Modelowanie wezbrań opadowych i jakości odpływu z małych nieobserwowanych zlewni rolniczych. Wyd. SGGW, pp. 74.
  • 3. Banasik K., Hejduk L., Hejduk A., Kaznowska E., Banasik J., Byczkowski A., 2013. Wieloletnia zmienność odpływu z małej zlewni rzecznej w regionie Puszczy Kozienickiej (Long−term variability of runoff from a small catchment in the region of the Kozienice Forest). Sylwan, 157(8), 578–586
  • 4. Banasik, K., Woodward, D.E., Hawkins, R. 2014. Curve Numbers for Two Agro-Forested Watersheds, World Environmental and Water Resources Congress. Water without Borders, ASCE 2014, 2235–2246, 2014b.
  • 5. Bański J., Czapiewski K. 2015. A vision of the polycentric development of the mazovia region in Poland, Geographical Journal 67, 4, 301–321 301.
  • 6. Brodowski R. 2009. Wpływ wilgotności i gęstości gleby lessowej na powierzchniową erozję wodną. Acta Agrophysica, 14(3), 567–576.
  • 7. Cerdà, A. and Doerr, S.H. 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process., 21:2325–2336. doi:10.1002/hyp.6755
  • 8. Defersha M. B., Quraishi S., and Melesse A. 2011. The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia, Hydrol. Earth Syst. Sci., 15, 2367–2375, doi:10. 5194/hess-15–2367–2011.
  • 9. Dekker LW, Ritsema CJ. 1994. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency, Water Resources Research 30: 2507–2517. DOI: 10.1029/94WR00749.
  • 10. Deletic A., 2001. Modeling of water and sediment transport over grassed areas. Journal of Hydrology 248, 168–182.
  • 11. Eijkelkamp 2005. Operating Instructions. 09.06 Rainfall Simulator Eijkelkamp , Maj 2005, pp. 7.
  • 12. Hejduk L., Hejduk A., Banasik K., 2015. Determination of Curve Number for snowmelt-runoff floods in a small catchment. Proc. IAHS, 370, 167–170.
  • 13. Hewelke E., Szatyłowicz J., Gnatowski T., Olesz-czuk R., 2016. Effects of soil water repellency on moisture patterns in a degraded Sapric Histosol. Land Degradation & Development, 27(4), 955–964. DOI: 10.1002/ldr.2305.
  • 14. Iserloh, T., Ries, J.B., Cerdà, A., Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. 2013. Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie 57(1), 11–26. DOI:10.1127/0372–8854/2012/S-00085.
  • 15. Lambor J., 1971: Hydrologia inżynierska. Wyd. Arkady, Warszawa.
  • 16. Laflen J.M., Lane L.J., Foster G.R. 1991. WEPP. A new generation of erosion prediction technology. Journal of Soil and Water Conservation, Vol. 46, 34–38.
  • 17. Le Bissonnais Y., Renaux B., Delouche H. 1995. Interactions between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled soils. Catena, 25, 33–46.
  • 18. Misra R.K., Rose C.W. 1996: Application and sensitivity analysis of process-based erosion model GUEST. European Journal of Soil Science, 47, 593–604.
  • 19. Radatz T.F., Thompson A.M. and Madison F.W. 2013.Soil moisture and rainfall intensity thresholds for runoff generation in southwestern Wisconsin agricultural watersheds. Hydrol. Process., 27, 3521–3534. doi: 10.1002/hyp.9460.
  • 20. Ries J.B., Iserloh T., Seeger M., Gabriels D. 2013. Rainfall simulations – constraints, needs and challenges for a future use in soil erosion research. Zeitschrift fur Geomorphologie, Supplementbande, vol. 57, Supplementary Iss. 1, 1–10.
  • 21. Ries, J.B., Seeger, M., Iserloh T., Wistorf, S., Fister W. 2009. Calibration of simulated rainfall characteristics for the study of soil erosion on agricultural land. Soil and Tillage Research 106, 109–116. DOI: 10.1016/j.still.2009.07.005.
  • 22. Rejman J., Usowicz B. 1999: Ilościowy opis przenoszenia gleby i wody w procesie erozji wodnej. Acta Agrofizyka 23, 143–148.
  • 23. Romkens M.J.M., Helming K., Prasad S.N. 2001. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena, 46, 103–123.
  • 24. Rose, C.W., Williams, J.R., Sander, G.C., Barry, D.A. 1983. A mathematical model for soil erosion and deposition processes: I. Theory for a plane land element. Soil Science Society of America Journal 47, 991–995.
  • 25. Schmidt J., von Werner M., Michael, A. 1996. EROSION 2D/3D. Ein Computermodell zur Simulation der Bodenerosion durch Wasser, Dresden/ Freiberg.
  • 26. Somorowski C., 1998. Wodno-bilansowe kryteria kształtowania siedlisk w krajobrazie rolniczym. Wyd. SGGW.
  • 27. Starkel L., Kundzewicz Z.B. 2008. Konsekwencje zmian klimatu dla zagospodarowania przestrzennego kraju, NAUKA 1/2008, 85–101.
  • 28. Sulmicka M. 2013. Tendencje rozwoju mazowieckiego rolnictwa. Mazowsze Studia Regionalne 12, 95–106.
  • 29. Wallis MG, Horne DJ. 1992. Soil water repellency. Advances Soil Science 20, 91–146.
  • 30. Wei L., Zhang B., Wang M. 2007. Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems. Agricultural Water Management 94, 54–62.
  • 31. Wischmeier W.H., Smith D.D. 1978. Predicting rainfall erosion losses – a guide to corservation planning. USDA, Handbook No. 537, pp. 58.
  • 32. WRB. 2014. World reference base for soil resources, World Soil Resources Reports 106. FAO, Rome, 2015.
  • 33. Yu B. 2002. Program Notes on Hsview. exe, ROGER.exe and SEADS. exe for hillslope runoff, sediment and nutrients/chemicals generation.
  • 34. Żmuda R, Szewrański S., Sasik J. 2007. Kształtowanie się wilgotności gleby na stoku Wzgórz Trzebnickich. Zeszyty Postepów Nauk Roliniczych, 285–292.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58006bfd-1824-4ac2-9863-92d2f9b7019d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.