Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To obtain anti-corrosive thermo-diffusion zinc coatings, the authors use highly effective zinc saturating mixtures. This technology makes it possible to obtain coatings with a high zinc content in the δ-phase as well as a zinc-rich phase of FeZn13 (ζ-phase) on the coating surface. As a result of long-term studies into the corrosion properties of thermo-diffusion zinc (TDZ) coatings conducted by the authors, a number of features of their corrosive behavior have been established. The corrosion rate of those coatings in desalted and chloride-containing media is lower than those of galvanic or hot-dip zinc coatings. The corrosion behavior depends on the content of zinc on the surface and the texture features of the coating. The results showed that on the surface of thermo-diffusion coatings in the corrosion on media containing chloride ions, zinc hydroxychloride (simonkolleite - Zn5Cl2[OH]8[H2O]) has been formed. Compared to coatings obtained by other methods, the rate of simonkolleite formation was higher on TDZ coatings, which might have a positive effect on their resistance in aggressive atmospheres.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
99--102
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Chelyabinsk State University, Chelyabinsk, Russian Federation
autor
- Vika Gal 2 Ltd., Chelyabinsk, Russian Federation
autor
- Chelyabinsk State University, Chelyabinsk, Russian Federation
autor
- Cracow University of Technology, 24 Warszawska Str., 31-155 Kraków, Poland
autor
- Chelyabinsk State University, Chelyabinsk, Russian Federation
autor
- Chelyabinsk State University, Chelyabinsk, Russian Federation
Bibliografia
- [1] E. V. Proskurkin, N. S. Gorbunov, Galvanizing Sherardizing and other Zinc Diffusion Coatings. Translated from Russian by D. E. Hayler. Stonehouse, Technicopy Limited, Gloucestershire, 1972.
- [2] F. Natrup, W. Graf, Thermochemical Surface Engineering of Steels 62, 737-750 (2015). DOI: 10.1533/9780857096524.5.737
- [3] R. G. Galin, Patent RF No 2170643: Modified Zinc Powder, from 12. October 2000, publ. July 2001 (in Russ.).
- [4] A. Wassilkowska, R. Galin, Study of zinc oxide nanopores structure on powder medium for TDG, in: Proc. of the V Int. Conf. on Electron Microscopy: EM2014, Kraków, Poland, 15-18.09.2014, AGH University of Science and Technology [et al.], Akapit, Kraków, 2014.
- [5] А. I. Biryukov, R. G. Galin, D. А. Zakharyevich, A. V. Wassilkowska, Т. V. Batmanova, Surface and Coatings Technology 372, 166-172 (2019). DOI: 10.1016/j.surfcoat.2019.05.029.
- [6] R. G. Galin, D. A. Zakharyevich, S. V. Rushitz, Materials Science Forum 870, 408-412 (2016). DOI: 10.4028/www.scientific.net/MSF.870.404.
- [7] V. Rangarajan, C. C. Cheng, L. L. Franks, Surface and Coatings Technology 56, 209-214 (1993). DOI: 10.1016/0257-8972(93)90253-K
- [8] A. Chakraborty, R. K. Ray, S. Sangal, Metall and Mat Trans A 39(10), 2416-2423 (2008). DOI: 10.1007/s11661-008-9589-z
- [9] H. Park, J. A. Szpunar, Corrosion Science 40 (4-5), 525-545 (1998). DOI: 10.1016/S0010-938X(97)00148-0
- [10] S. Khorsand, K. Raeissi, M. A. Golozar, Corrosion Science 50 (8), 2676-2678 (2011). DOI: 10.1016/j.corsci.2011.04.007.
- [11] H. Asgari, M. R. Toroghinejad, M. A. Golozar, Applied Surface Science 253 (16) 6769-6777 (2007). DOI:10.1016/j.apsusc.2007.01.093
- [12] R. Parisot. S. Forest, A. Pineau et al., Metall. Mater. Trans. A 35A, 813-823 (2004). DOI: 10.1007/s11661-004-0008-9.
- [13] H. Tanaka, N. Moriwaki, T. Ishikawa, T. Nakayama, Advanced Powder Technology, 26 (2), 612-617 (2015) DOI: 10.1016/j.apt.2015.01.010.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57fbc433-7ff6-4771-bb99-6e961717c4ad