PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the equivalent spring modelling method of CFS elements encased in ultra-lightweight concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An efficient finite element approach was recently developed to analyze encased cold-formed steel (CFS) structures. This new technique replaced encasing material with unidirectional springs, analogous to the Winkler foundation concept, to shorten the analysis time while ensuring accuracy and reliability in predicting the structural behaviour of encased CFS components. In this paper, the validity, and limitations of the simplified spring model to represent outstanding plates were assessed. The investigation demonstrated that the simplified spring model could effectively predict the ultimate load for a wide range of ultra-lightweight concrete moduli (50–250 MPa) with an acceptable error. The analysis indicated that plate elements initially in cross-section class 4 without encasing material become at least class 3, or better as a consequence of encasing. Previously reported experiments were used to evaluate the performance of the ESM. The analysis demonstrated that the ESM can accurately predict the local failure ultimate load of encased CFS sections with an acceptable error percent and significantly less computational effort than a 3D solid model.
Rocznik
Strony
art. no. e151384
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Department of Structural Engineering, Budapest University of Technology and Economics, Hungary
autor
  • Department of Structural Engineering, Budapest University of Technology and Economics, Hungary
Bibliografia
  • [1] A. Alabedi and P. Hegyi, “Development of a Eurocode-based design method for local and distortional buckling for cold-formed C-sections encased in ultra-lightweight concrete under compression,” Thin-Walled Struct., vol. 196, p. 111504, 2024, doi: 10.1016/j.tws.2023.111504.
  • [2] P. Hegyi and L. Dunai, “Experimental study on ultra-lightweight-concrete encased cold-formed steel structures Part I: Stability behaviour of elements subjected to bending,” Thin-Walled Struct., vol. 101, pp. 75–84, 2016.
  • [3] H. Wu, S. Chao, T. Zhou, and Y. Liu, “Cold-formed steel framing walls with infilled lightweight FGD gypsum Part II: Axial compression tests,” Thin-Walled Struct., vol. 132, pp. 771–782, 2018, doi: 10.1016/j.tws.2018.06.034.
  • [4] C. Yin, L. Zhou, Q. Zou, and Y. Xu, “Effect of Filling Phosphogypsum on the Axial Compression Behavior of Cold-Formed Thin-Walled Steel Walls,” Buildings, vol. 12, p. 1325, 2022, doi: 10.3390/buildings12091325.
  • [5] Z. Xu, Z. Chen, B.H. Osman, and S. Yang, “Seismic performance of high-strength lightweight foamed concrete-filled cold-formed steel shear walls,” J. Constr. Steel Res., vol. 143, pp. 148–161, 2018, doi: 10.1016/j.jcsr.2017.12.027.
  • [6] Z. Xu, Z. Chen, and S. Yang, “Seismic behavior of cold-formed steel high-strength foamed concrete shear walls with straw boards,” Thin-Walled Struct., vol. 124, pp. 350–365, 2018, doi: 10.1016/j.tws.2017.12.032.
  • [7] Z. Xu, Z. Chen, and S. Yang, “Effect of a new type of high-strength lightweight foamed concrete on seismic performance of cold-formed steel shear walls,” Constr. Build. Mater., vol. 181, pp. 287–300, 2018, doi: 10.1016/j.conbuildmat.2018.06.067.
  • [8] W. Wang, J. Wang, T.Y. Yang, L. Guo, and H. Song, “Experimental testing and analytical modeling of CFS shear walls filled with LPM,” Structures, vol. 27, pp. 917–933, 2020, doi: 10.1016/j.istruc.2020.06.016.
  • [9] W. Wang, J. Wang, P. Zhao, L. Ja, and G. Pan, “Axial compressive experiments and structural behaviour estimation of CFS composite walls sprayed with LPM,” J. Build. Eng., vol. 30, p. 101305, 2020, doi: 10.1016/j.jobe.2020.101305.
  • [10] W. Wang, J. Wang, and L. Guo, “Mechanical behavior analysis of LEM-infilled cold-formed steel walls,” Sustain. Struct., vol. 2, no. 1, p. 000013, 2022, doi: 10.54113/j.sust.2022.000013.
  • [11] M.A.O. Mydin, and Y.C. Wang, “Structural performance of lightweight steel-foamed concrete–steel composite walling system under compression,” Thin-Walled Struct., vol. 49, pp. 66–76, 2011.
  • [12] E.A. Flores-Johnson and Q.M. Li, “Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces,” Compos. Struct., vol. 94, pp. 1555–1563, 2012.
  • [13] E. Eltayeb et al., “Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads,” Eng. Struct., vol. 211, p. 110448, 2020, doi: 10.1016/j.engstruct.2020.110448.
  • [14] E. Eltayeb, X. Ma, Y. Zhuge, J. Xiao, and O. Youssf, “Composite walls Composed of profiled steel skin and foam rubberized concrete subjected to eccentric compressions,” J. Build. Eng., vol. 46, p. 103715, 2022, doi: 10.1016/j.jobe.2021.103715.
  • [15] A. Sheta, X. Ma, Y. Zhuge, M. ElGawady, J.E. Mills, and E. Abd-Elaal, “Axial compressive behaviour of thin-walled composite columns comprise high-strength cold-formed steel and PE-ECC,” Thin-Walled Struct., vol. 184, p. 110471, 2023, doi: 10.1016/j.tws.2022.110471.
  • [16] F.M.D.S. More and S.S. Subramanian, “Experimental Investigation on the Axial Compressive Behaviour of Cold-Formed Steel-Concrete Composite Columns Infilled with Various Types of Fibre-Reinforced Concrete,” Buildings, vol. 13, p. 151, 2023, doi: 10.3390/buildings13010151.
  • [17] R. Senthilkumar, M. Divya, S. Divya Roy, A. Bahurudeen, S. Avudaiappan, and K.D. Tsavdaridis, “Behaviour of cold-formed steel-concrete composite columns under axial compression: Experimental and numerical study,” Structures, vol. 44, pp. 487–502, 2022, doi: 10.1016/j.istruc.2022.07.086.
  • [18] Y. Li, X. Wu, X. Li, K. Zhang, and C. Gao, “Compression Performance and Calculation Method of Thin-Walled Prefabricated Steel Tube Lightweight Concrete Columns,” Adv. Civ. Eng., vol. 2022, p. 2011786, 2022, doi: 10.1155/2022/2011786.
  • [19] B. Yao, H. Fang, Z. Qian, Q. Wang, J. Sun, and W. Wang, “Experimental and Numerical Study on Axial Compression Cold-Formed Steel Composite Wall under Concentrated Loads,” Buildings, vol. 13, p. 1232, 2023, doi: 10.3390/buildings13051232.
  • [20] É. Lublóy et al., “Thermal insulation capacity of concretes by expanded polystyrene aggregate,” 4th International FIB Congress – Improving Performance of Concrete Structures, 2014.
  • [21] P. Hegyi and L. Dunai, “Experimental investigations on ultra-lightweight-concrete encased cold-formed steel structures: Part II: Stability behaviour of elements subjected to compression,” Thin-Walled Struct., vol. 101, pp. 100–108, 2016.
  • [22] P. Hegyi and L. Dunai, “Experimental Investigation of Thin-walled Column-end Joints Encased in Ultra-lightweight Concrete,” Period. Polytech.-Civ. Eng., vol. 61, pp. 951–957, 2017.
  • [23] P. Hegyi, L. Horváth, L. Dunai, and A.A.M. Ghazi, “Experimental Investigation of Shear Effects in Ultra-Lightweight Concrete Encased CFS Structural Members,” Ce/Papers, vol. 5, pp. 143–150, 2022, doi: 10.1002/cepa.1739.
  • [24] N. Eid and A.L. Joo, “Simplified numerical model development for advanced design of lightweight-concrete encased cold-formed steel compressed elements,” Adv. Civ. Eng., vol. 2022, p. 1207885, 2022, doi: 10.1155/2022/1207885.
  • [25] P. Hegyi and L. Dunai, “07.18: Cold-formed C-sections encased in ultra-lightweight concrete: Development of a Eurocode-based design method,” Ce/Papers, vol. 1, pp. 1647–1656, 2017.
  • [26] A. Alabedi and P. Hegyi, “Assessing the Equivalent Spring Method for Modelling of Lightweight-concrete Encased Cold-formed Steel Elements in Compression,” Period. Polytech.-Civ. Eng., vol. 68, pp. 305–313, 2023, doi: 10.3311/PPci.22803.
  • [27] Ansys® Academic Research, R2, help system, structural analysis, Guide, ANSYS, 2022,
  • [28] En 1993-1-5, Eurocode 3, Design of Steel Structures, Part 1–5: Plated Structural Elements, CEN, Bruxelles, 2006.
  • [29] J. Becque, “An Analytical Design Approach for Outstand Steel Plates in Compression,” Ce/Papers, vol. 6, pp. 1821–1825, 2023, doi: 10.1002/cepa.2535.
  • [30] K.J.R. Rasmussen and G.J. Hancock, “Plate slenderness limits for high strength steel sections,” J. Constr. Steel Res., vol. 23, pp. 73–96, 1992, doi: 10.1016/0143-974X(92)90037-F.
  • [31] J. Nie, H. Sugimoto, K. Ono, T. Miyashita, M. Matsumura, and S. Okada, “An experimental study on the local buckling strength of an SBHS700 stub column with cruciform section: With an overview of the mechanical properties of SBHS700,” Steel Constr., vol. 12, pp. 82–90, 2019.
  • [32] P.B. Dinis, and D. Camotim, “Buckling, post-buckling and strength of cruciform columns,” Proc. SSRC Annual Stability Conference, Pittsburgh, USA, 2011.
  • [33] O.S. Hopperstad, M. Langseth, and T. Tryland, “Ultimate strength of aluminium alloy outstands in compression: experiments and simplified analysis,” Thin-Walled Struct., vol. 34, pp. 279–294, 1999, doi: 10.1016/S0263-8231(99)00013-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57fb35eb-405c-4d48-8118-b319a95c3bb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.