PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mycoremediation of Heavy Metals Contaminated Soil by Using Indigenous Metallotolerant Fungi

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study was aimed to identify the indigenous fungal strains which could possibly be applied to the bioremediation of heavy metal-contaminated soil. The contaminated soil samples of Korangi Industrial Estate Karachi were found to have total concentration of Cu 1.044 mgL1 , and Pb 0.631 mgL–1. A total of eight indigenous strains of the fungus were isolated and screened for bioremediation capacity from heavy metals-contaminated soil. For the bioremediation of Lead (Pb) these same indigenous eight fungal strains were used for biological remediation. All the fungal isolated with enhanced bioremediation capability were through phenotypic and genotypical characterization. The topology of the phylograms established that the fungal isolates used in this study were allocated to: K1 (Penicillium notatum), K2 (Aspergillus parasiticus), K3 (Aspergillus fumigatus), K4 (Aspergillus flavus), K5 (Aspergillus terries), K6 (Fusarium solani), K7 (Penicillium chrysogenum), K8 (Aspergillus niger), K9 (Penicillium piceum) and K10 (Penicillium restrictum). Thus, K8 fungal isolate was found to be more efficient with maximum bioremediation capacity, for copper and lead removal efficiency, and selected for FTIR and SEM to find out the uptake of Cu and Pb which of the functional groups are involved, and further to detect the effects of bioleaching of both heavy metals on to the surface of K8 fungus biomass. The current study indicates that indigenous fungal isolates could be used with high potency to remediate or clean up the heavy metals-contaminated soil either by the technique of in situ or ex-situ bioremediation.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wz.
Twórcy
  • Department of Microbiology, Abbottabad University of Science & Technology, 22010 Havelian, Pakistan
autor
  • Department of Microbiology, Abbottabad University of Science & Technology, 22010 Havelian, Pakistan
  • Department of Microbiology, Abbottabad University of Science & Technology, 22010 Havelian, Pakistan
autor
  • Food and Biotechnology Research Center PCSIR, Labs Complex Lahore Pakistan
autor
  • Food and Biotechnology Research Center PCSIR, Labs Complex Lahore Pakistan
  • Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir Upper
autor
  • Department of Agriculture, University of Ioannina, 47100 Arta, Greece
  • Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Bibliografia
  • 1. Ashfaq, M., Culas, R., Baig, I. A., Ali, A. & Imran, M.A. (2021). Socio-economic Impact of Groundwater Resource Use on the Livelihood of Farming Communities in Eastern Punjab, Pakistan. https://cdn.csu.edu.au/__data/assets/pdf_file/0006/3930180/ILWS-Report-156-Socio-economic-Impact-of-Groundwater-Resource-Use-on-the-Livelihood-of-Farming-Communities-in-Eastern-Punjab,-Pakistan.pdf
  • 2. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G. & Mariñas, B.J. (2008). Mayes, A.M.J.N. Science and technology for water purification in the coming decades. Nature 452, 301–310. DOI: 10.1038/nature06599.
  • 3. Huppert, H.E. & Sparks, R.S.J. (2006). Extreme natural hazards: population growth, globalization and environmental change Phil. Trans. R. Soc. A. 3641875–1888. DOI: 10.1098/rsta.2006.1803.
  • 4. Babel, S. & Kurniawan, T.K. (2004). Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54, 951–967. DOI: 10.1016/j. chemosphere.2003.10.001.
  • 5. Sabri, A.W., Rasheed, K.A. & Kassim, T.I. (1993). Heavy metals in the water, suspended solids and sediment of the river Tigris impoundment at Samarra. Water Res. 27, 1099–1103. DOI: 10.1016/0043-1354(93)90075-S.
  • 6. Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R., Wenjun, M. & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol Environ Saf, 15, 211,111887. DOI: 10.1016/j.ecoenv.2020.111887.
  • 7. Ene, A., Popescu, I.V. & Stihi, C. (2009). Applications of proton induced X-ray emission technique in materials and environmental science. Mater. Sci. 20, 35–39.
  • 8. Jangid, S. & Shringi, S.K. (2013). Observations on the Effect of Copper on Growth Performance, Dry Matter Production and Photosynthetic Pigments of Ludwigia Perennis L. Nature Environ. Poll. Tech. 12(1), 171. https://neptjournal.com/upload-images/NL-41-31-31.pdf
  • 9. Jennings, S. & Polunin, N.V.C. (1996). Effects of Fishing Effort and Catch Rate Upon the Structure and Biomass of Fijian Reef Fish Communities. J. Appl. Ecol. 33, 2, 1996, 400–12. DOI: 10.2307/2404761.
  • 10. Marcus, Y. (2019). Some Advances in Supercritical Fluid Extraction for Fuels, Bio-Materials and Purification. Processes 7, 156. DOI: 10.3390/pr7030156
  • 11. Tokunaga, S., & Hakuta, T.J.C. (2002). Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemospehere. 46, 31–38. DOI: 10.1016/S0045-6535(01)00094-7.
  • 12. Makino, T., Takano, H., Kamiya, T., Itou, T., Sekiya, N., Inahara, M. & Sakurai, Y.J.C. (2008). Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification. Chemospe-here 70, 1035–1043. DOI: 10.1016/j.chemosphere.2007.07.080.
  • 13. Wang, S-H., Yang, J., Liu, S-M., Xu, Z-W., Lu, X-C., Wang, B., Wang, H. & Bai K-C. (2011). Environmental effects of heavy metal elements release in Yangshanchong tailing pool, Shizishan, Tongling, Anhui Province. Geolog. J. Chinese Univ., 17(1), 93–100. https://geology.nju.edu.cn/EN/Y2011/V17/I1/93
  • 14. Davis, T.A., Volesky, B. & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Res., 37, 4311–4330. DOI: 10.1016/S0043-1354(03)00293-8.
  • 15. Hseu, Z-Y., Chen, Z-S., Tsai, Ch-Ch., Tsui, Ch-Ch., Cheng, S-F., Liu, Ch-L. & Lin, H-T. (2002). Digestion Methods for Total Heavy Metals in Sediments and Soils. Water Air. & Soil Pollut. 141, 189–205 DOI: 10.1023/A:1021302405128
  • 16. Sarma, H. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J. Environ. Sci. Technol. 4(2), 118–138. DOI: 10.3923/jest.2011.118.138.
  • 17. Khan, I., Ibrar, A., Abbas, N., & Saeed, A. (2014). Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multi-farious applications. Eur. J. Med. Chem. 9(76), 193–244. DOI: 10.1016/j.ejmech.2014.02.005.
  • 18. Khan, I., Ali, M., Aftab, M., Shakir, S., Qayyum, S., Haleem, K.S. & Tauseef, I. (2019). Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environ. Monit. Assess. 191, 1–15. DOI: 10.1007/s10661-019-7781-9.
  • 19. Khan, I., Aftab, M., Shakir, S., Ali, M., Qayyum, S., Rehman, M.U., Haleem, K.S. & Touseef, I. (2019). Mycore-mediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ. Monit. Assess, 191, 1–11. DOI: 10.1007/s10661-019-7769-5.
  • 20. Wilson, E.B., Decius, J.C. & Cross, P.C. (1980). Molecular vibrations: the theory of infrared and Raman vibrational spectra; Courier Corporation:
  • 21. Kaminskyj, S., Jilkine, K., Szeghalmi, A. & Gough, K. (2008). High spatial resolution analysis of fungal cell biochemistry – bridging the analytical gap using synchrotron FTIR spectromicroscopy, FEMS Microbiol. Letters, 284(1), 1–8. DOI: 10.1111/j.1574-6968.2008.01162.x.
  • 22. Zameer, M., Tahir, U., Khalid, S., Zahra, N., Sarwar, A., Aziz, T., Saidal, A., Alhomrani, M.S., Alamri. A., Dablool, A.S., Sameeh, M.Y., Mohamed., A.A. & Alharbi, A. (2023). Isolation and characterization of indigenous bacterial assemblage for biodegradation of persistent herbicides in the soil. Acta Biochim. Pol. 31, 70(2), 325–334. DOI: 10.18388/abp.2020_6563.
  • 23. Khan, I., Aftab, M., Tauseef, I. & Syed, K. (2018). Isolation, phenotypic and genotypic characterization of metallotolerant fungal isolates from industrial soil. Arch Clin Microbiol. EuroSciCon Conference on Microbiology & Virology. June 21-22, 2018 Paris, France.
  • 24. Ahmad, B., Yousafzai, A.M., Maria, H., Khan, A.A., Aziz, T., Alharbi, M., Alsahammari, A. & Alasmari, A.F. (2023). Curative Effects of Dianthus orientalis against Paracetamol Triggered Oxidative Stress, Hepatic and Renal Injuries in Rabbit as an Experimental Model. Separations 10, 182. DOI: 10.3390/separations10030182.
  • 25. Mingorance, M.D., Valdés, B. & Oliva, S.R. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environ. Int., 33(4), 514–520. DOI: 10.1016/j.envint.2007.01.005.
  • 26. Su, Ch., Jiang, L.Q. & Zhang, W.J. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. 3, 24. Environ. Skeptics Critics, 3(2), 24–38. http://www.iaees.org/publications/journals/environsc/articles/2014-3%282%29/a-review-on-heavy-metal-contamination-in-the-soil-worldwide.pdf
  • 27. Romanelli, A.M., Sutton, D.A., Thompson, E.H., Rinaldi, M.G. & Wickes, B.L. (2010). Sequence-based identification of filamentous basidiomycetous fungi from clinical specimens: a cautionary note. J. Clin. Microbiol., 48(3), 741–752. DOI: 10.1128/JCM.01948-09.
  • 28. Yao, Z., Li, J., Xie, H. & Yu, C. (2016). Review on the remediation technologies of POPs. Proc. Enviorn. Sci. 16, 722–729. DOI: 10.1016/j.proenv.2012.10.099.
  • 29. Han, D., Wu, X., Li, R., Tang, X., Xiao, S. & Scholz, M. (2021). Critical Review of Electro-kinetic Remediation of Contaminated Soils and Sediments: Mechanisms, Performances and Technologies. Water Air. Soil. Pollut. 232, 335. DOI: 10.1007/s11270-021-05182-4.
  • 30. Khan, A.G. (2001). Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int., 26(5–6), 417–423. DOI: 10.1016/s0160-4120(01)00022-8.
  • 31. Anand, P., Isar, J., Saran, S. & Saxena, R.K. (2006). Bioaccumulation of copper by Trichoderma viride. Bioresour Technol. 97(8), 1018–1025. DOI: 10.1016/j.biortech.2005.04.046.
  • 32. Gadd, G.M. (2000). Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11(3), 271–279. DOI: 10.1016/s0958-1669(00)00095-1.
  • 33. Baldrian, P. & Gabriel, J. (2002). Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Lett. 2; 206(1), 69–74. DOI: 10.1111/j.1574-6968.2002.tb10988.x.
  • 34. Babich, H., & Stotzky, G. (1985). Heavy metal toxicity to microbe-mediated ecologic processes: a review and potential application to regulatory policies. Environ. Res., 36(1), 111–137. DOI: 10.1016/0013-9351(85)90011-8.
  • 35. Ren, W-X., Li, P-J,. Zheng, L., Fan, S-X., & Verhozina, V.A. (2009). Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans. J. Hazard. Mater. 15, 162(1),17–22. DOI: 10.1016/j. jhazmat.2008.05.005.
  • 36. Valix, M., Usai, F. & Malik, R.J. (2001). Fungal bioleaching of low grade laterite ores. Minerals Engineering, 14, 197–203. DOI: 10.1016/S0892-6875(00)00175-8.
  • 37. Massaccesi, G., Romero, M.C., Cazau, M.C. & Bucsinszky, A.M. (2002). Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J. Microbiol. Biotechnol. 18, 817–820. DOI: 10.1023/A:1021282718440.
  • 38. Bai, R.S. & Abraham, T.E. (2002). Studies on enhancement of Cr (VI) biosorption by chemically modified biomass of Rhizopus nigricans.Water Res., 36, 1224–1236. DOI: 10.1016/S0043-1354(01)00330-X.
  • 39. Zhou, D., Zhang, L. & Guo, S. (2005). Mechanisms of lead biosorption on cellulose/chitin beads. 39, 3755–3762. DOI: 10.1016/j.watres.2005.06.033.
  • 40. Yee, N., Benning, L.G., Phoenix, V.R. & Ferris, F.G. (2004). Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ. Sci. Technol. 1, 38(3), 775–782. DOI: 10.1021/es0346680.
  • 41. Kostova, I. (2023). The Role of Complexes of Biogenic Metals in Living Organisms. Inorganics, 11, 56. DOI: 10.3390/inorganics11020056.
  • 42. Peña-Castro, J.M., Martínez-Jerónimo, F., Esparza-García, F. & Cañizares-Villanueva, R.O. (2004). Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress. Chemosphere, 57(11), 1629–1636. DOI: 10.1016/j.chemosphere.2004.06.041.
  • 43. Damodaran, D., Balakrishnan, R.M. & Shetty, V.K. (2013). The uptake mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by mycelia and fruiting bodies of Galerina vittiformis. Biomed. Res. Int. 2013, 149120. DOI: 10.1155/2013/149120.
  • 44. Arifeen, M.Z.U., Aziz, T., Nawab, S. & Nabi, G. (2015). Phytoremediation of cadmium by Ricinus communis L. in hydrophonic condition. American-Eurasian J. Agric. & Environ. Sci., 15(6), 1155–1162. DOI: 10.5829/idosi.aejaes.2015.15.6.94212.
  • 45. Lacerda, J.W.F., Siqueira, K.A., Vasconcelos, L.G., Bellete, B.S., Dall’Oglio, E.L., Sousa Junior, P.T., Faraggi, T.M., Vieira, L.C.C., Soares, M.A. & Sampaio, O.M. (2021). Metabolomic Analysis of Combretum lanceolatum Plants Interaction with Diaporthe phaseolorum and Trichoderma spirale Endophytic Fungi through 1 H-NMR. Chem. Biodivers. 18(10),e2100350. ccc
  • 46. Aziz, T., Shah, Z., Sarwar, A., Ullah, N., Khan, A.A., Sameeh., M.Y., Haiying, C. & Lin, L. (2023). Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass Conv. Bioref. DOI: 10.1007/s13399-023-04283-w.
  • 47. Ullah, N., Mujaddad-ur-Rehman, M., Sarwar, A., Naddem, M., Nelofer, R., Irfan, M., Idrees, M., Ali, U., Naz, S. & Aziz. T., (2023). Effect of bioprocess parameters on alkaline protease production by locally isolated Bacillus cereus AUST-7 using tannery waste in submerged fermentation. Biomass Conv. Bioref. DOI: 10.1007/s13399-023-04498-x.
  • 48. Ullah, N., Rehman, M.U., Sarwar, A., Nadeem, M., Nelofer, R., Shakir, H.A., Irfan, M., Idrees, M., Naz, S., Nabi, G., Shah, S, Aziz, T., Metab, A., Alshammari A. & Alqahtani, F. (2022). Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain. Fermentation 8, 628. DOI: 10.3390/fermentation8110628.
  • 49. Hadi, F. & Aziz, T. (2015). A Mini Review on Lead (Pb) Toxicity in Plants. J. Biol. Life Sci., 6(2), 91–101. DOI: 10.5296/jbls.v6i2.7152.
  • 50. Naveed, M., Makhdoom, S.I., Rehman, S.U., Aziz, T., Bashir, F., Ali, U., Alharbi, M., Alshammari, A. & Alasmari, A.F. (2023). Biosynthesis and Mathematical Interpretation of Zero-Valent Iron NPs Using Nigella sativa Seed Tincture for Indemnification of Carcinogenic Metals Present in Industrial Effluents. Molecules 28, 3299. DOI: 10.3390/molecules28083299.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57f93dac-634a-4035-b82c-c29ae4e8def2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.