Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper investigates the performance of a large-size helical baffle heater in an in-situ operation using a numerical simulation method. The study reveals that the fluid in the shell retains a spiral flow, and the output flow velocity is higher than in the surrounding area. However, the pitch design is big, resulting in a low-velocity flow zone on the backwind side. At 100 kW and 500 m3 /h, the fluid flow is turbulent. At 50 kW and 200 m3 /h, the fluid remains laminar. As the flow rate rises, the pressure of tar-rich coal formation grows dramatically. The wall temperature exhibits a spiral plunger at the inlet, but the bottom temperature is symmetrically distributed. Under low power and flow, Reynolds number change has a greater impact on the combination of Nusselt and Prandtl numbers. The wellbore experiences higher thermal loads during downhole heating, dramatically increasing the possibility of thermal damage. An increase in the heater shell length improves the total heat transfer performance. Conventional heaters often only heat the bottom formation. Therefore, while optimizing the construction, it is vital to ensure that the weight of the heater itself does not exceed the tensile strength of the cable and consider shifting down the perforation outlet or lowering the outlet.
Rocznik
Tom
Strony
art. no. e153839
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
- CNOOC Gas & Power Group, Research & Development Center, Beijing, 100028, China
- CNOOC Key Laboratory of Liquefied Natural Gas and Low-carbon Technology, Beijing, 100028, China
autor
- CNOOC Gas & Power Group, Research & Development Center, Beijing, 100028, China
autor
- CNOOC Gas & Power Group, Research & Development Center, Beijing, 100028, China
autor
- CNOOC Gas & Power Group, Research & Development Center, Beijing, 100028, China
autor
- CNOOC Gas & Power Group, Research & Development Center, Beijing, 100028, China
autor
- CNOOC Gas & Power Group, Research & Development Center, Beijing, 100028, China
autor
- CNOOC Gas & Power Group, Research & Development Center, Beijing, 100028, China
autor
- CNOOC Gas & Power Group, Research & Development Center, Beijing, 100028, China
Bibliografia
- [1] M. Li, X. Cheng, J. Hao, Z. Lu, and J. Wei, “Experimental and numerical investigation on the heat and mass transfer performance of tar rich coal in-situ pyrolysis,” Int. J. Heat Fluid Flow., vol. 107, p. 109412, Jul. 2024, doi: 10.1016/j.ijheatfluidflow.2024.109412.
- [2] Z. Wang et al., “Study on pore structure and fractal characteristics of tar-rich coal during pyrolysis by mercury intrusion porosimetry (MIP),” Geofluids, vol. 2022, p. 2067228, Oct. 2022, doi: 10.1155/2022/2067228.
- [3] D. Fu et al., “Thermodynamic analysis on in-situ underground pyrolysis of tar-rich coal: Secondary reactions,” ACS Omega, vol. 8, no. 14, pp. 12805–12819, Apr. 11 2023, doi: 10.1021/acsomega.2c08033.
- [4] L. Ma et al., “Investigation of pyrolysis and mild oxidation characteristics of tar-rich coal via thermogravimetric experiments,” ACS Omega, vol. 7, no. 29, pp. 25613–25624, Jul 26 2022, doi: 10.1021/acsomega.2c02786.
- [5] Q. Shi et al., “Experimental study on the tar and gas distribution during tar-rich coal pyrolysis with stress loading,” Fuel, vol. 376, p. 132727, Nov. 2024, doi: 10.1016/j.fuel.2024.132727.
- [6] F. Yang et al., “Thermodynamic analysis of in-situ underground pyrolysis of tar-rich coal: Primary reactions,” ACS Omega, vol. 8, no. 21, pp. 18915–18929, May 2023, doi: 10.1021/acsomega.3c01321.
- [7] Y. Hu, Y. Bao, J. Meng, D. Li, X. Yuan, and Z. Dong, “Biomethane production efficiency and degradation mechanism of tar-rich coal in anaerobic digestion,” Fuel, vol. 375, p. 132560, Nov. 2024, doi: 10.1016/j.fuel.2024.132560.
- [8] W. Guo et al., “Effects of packer locations on downhole electric heater performance: experimental test and economic analysis,” Energies, vol. 13, no. 2, p. 377, Jan. 2020, doi: 10.3390/en13020377.
- [9] Z. Kang, Y. Zhao, and D. Yang, “Review of oil shale in-situ conversion technology,” Appl. Energy, vol. 269, p. 115121, Jul. 2020, doi: 10.1016/j.apenergy.2020.115121.
- [10] Y. Chen, H. Zeng, J. Wang, H. Chen, and J. Zhu, “Heat transfer performance of a downhole electric tubular resistive heater,” Appl. Sci., vol. 12, no. 19, p. 9508, Oct. 2022, doi: 10.3390/app12199508.
- [11] F. Fei, Y. Chen, J. Wu, J. Su, and H. Gu, “Numerical comparison of orifice, ladder helical or segmental baffle half-cylindrical heat exchangers,” Heat Transfer Eng., vol. 45, pp. 1974–1988, 2023, doi: 10.1080/01457632.2023.2289231.
- [12] D.V. Lesnoy and S.K. Churakova, “Segmental baffles as a means of improving the heat transfer efficiency of air coolers,” Chem. Pet. Eng., vol. 57, no. 1–2, pp. 106–112, May 2021, doi: 10.1007/s10556-021-00902-3.
- [13] J. Zhang, S. Guo, Z. Li, J. Wang, Y. He, and W. Tao, “Experimental performance comparison of shell-and-tube oil coolers with overlapped helical baffles and segmental baffles,” Appl. Therm. Eng., vol. 58, no. 12, pp. 336–343, Sep. 2013, doi: 10.1016/j.appl thermaleng.2013.04.009.
- [14] M.F. Nia, H. Farzad, A.B. Ansari, M. Ghodrat, S.A.G. Nassab, and M. Behnia, “Performance improvement of a tubular heat exchanger by tube arrangement optimization using simulated annealing algorithm and blocked-off method,” Therm. Sci. Eng. Prog., vol. 40, p. 101793, May 2023, doi: 10.1016/j.tSep.2023.101793.
- [15] M.V. Vukic, M.A. Tomic, P.M. Zivkovic, and G.S. Ilic, “Effect of segmental baffles on the shell-and-tube heat exchanger effectiveness,” Hem. Ind., vol. 68, no. 2, pp. 171–177, Mar.-Apr. 2014, doi: 10.2298/hemind130127041v.
- [16] E.M. S. El-Said and M.M. Abou Al-Sood, “Shell and tube heat exchanger with new segmental baffles configurations: A comparative experimental investigation,” Appl. Therm. Eng., vol. 150, pp. 803–810, Mar. 2019, doi: 10.1016/j.applthermaleng.2019.01.039.
- [17] X. Gu, N. Li, C. Chen, Q. Zhang, G. Wang, and Y. Wang, “Analysis of fluid retention zones in heat exchangers with segmental baffle and helical baffle,” Int. J. Chem. React. Eng., vol. 20, no. 7, pp. 681–696, Jul. 2022, doi: 10.1515/ijcre-2021-0230.
- [18] Z. Wang, P. Wang, D. Zeng, T. Shi, and W. Deng, “A study on the influential factors of stress corrosion cracking in C110 casing pipe,” Materials, vol. 15, no. 3, p. 801, Feb. 2022, doi: 10.3390/ma15030801.
- [19] L. Cai, G. Xu, M.A. Polak, and M. Knight, “Horizontal directional drilling pulling forces prediction methods – A critical review,” Tunnelling and Underground Space Technology, vol. 69, pp. 85–93, Oct. 2017, doi: 10.1016/j.tust.2017.05.026.
- [20] W. Guo et al., “Experimental investigation on performance of downhole electric heaters with continuous helical baffles used in oil shale in-situ pyrolysis,” Appl. Therm. Eng., vol. 147, pp. 1024–1035, Jan. 2019, doi: 10.1016/j.applthermaleng.2018.11.013.
- [21] C. Dong, Y. Chen, and J. Wu, “Flow and heat transfer performances of helical baffle heat exchangers with different baffle configurations,” Appl. Therm. Eng., vol. 80, pp. 328–338, Apr. 2015, doi: 10.1016/j.applthermaleng.2015.01.070.
- [22] J. Shui, D. Wenjing, W. Peng, and C. Lin, “Numerical investigation on double shell-pass shell-and-tube heat exchanger with continuous helical baffles,” J. Thermodyn., vol. 2011, pp. 651–654, 2011.
- [23] Z. Wang et al., “Economic and heating efficiency analysis of double-shell downhole electric heater for tar-rich coal in-situ conversion,” Case Stud. Therm. Eng., vol. 41, p. 102596, Jan. 2023, doi: 10.1016/j.csite.2022.102596.
- [24] R. Kunwer, S. Pandey, and S.S. Bhurat, “Comparison of selected shell and tube heat exchangers with segmental and helical baffles,” Therm. Sci. Eng. Prog., vol. 20, p. 100712, Dec. 2020, doi: 10.1016/j.tSep.2020.100712.
- [25] S. Lanzini, M. Mar.ro, M. Creyssels, and P. Salizzoni, “Helium plumes at moderate Reynolds number,” Phys. Rev. Fluids, vol. 9, no. 6, p. 064501, Jun. 2024, doi: 10.1103/PhysRevFluids.9.064501.
- [26] J.W. Rose, “Heat-transfer coefficients, Wilson plots and accuracy of thermal measurements,” Exp. Therm. Fluid Sci., vol. 28, no. 2–3, pp. 77–86, 2004.
- [27] J.F. Yang, Y.S. Lin, H.B. Ke, M. Zeng, and Q.W. Wang, “Numerical investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles,” Energy, vol. 115, no. 5–6, pp. 1572–1579, 2016.
- [28] J. Wu, J. Zhou, Y. Chen, M. Wang, C. Dong, and Y. Guo, “Experimental investigation on enhanced heat transfer of vertical condensers with trisection helical baffles,” Energy Convers. Manage., vol. 109, pp. 51–62, Feb. 1 2016, doi: 10.1016/j.enconman.2015.11.044.
- [29] Q. Bu, Q. Li, and X. Li, “Numerical heat transfer simulation of oil shale large-size downhole heater,” Appl. Sci., vol. 14, no. 6, p. 2235, Mar. 2024, doi: 10.3390/app14062235.
- [30] Robert, J., and Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., 1988.
- [31] Z. Du and W. Li, “The catalytic effect from alkaline elements on the tar-rich coal pyrolysis,” Catalysts, vol. 12, no. 4, p. 376, Apr. 2022, doi: 10.3390/catal12040376.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57f622f6-4fd9-45d3-940e-cf69e4e86358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.