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Piotr Rapp

COMPUTATIONAL MODEL OF ADHESIVE SCARF 
JOINTS IN TIMBER BEAMS 

The subject of this paper is the general formulation of a model for scarf adhesive 
joints in timber beams within the framework of plane linear elasticity. It is assumed 
that wood is orthotropic. The joint can be subjected to a complex loading state inc-
luding an axial force, a bending moment and a shear force. The joint model is given 
in displacements by means of a set of four partial differential equations of the se-
cond order. Boundary conditions cater for sharp edges in the adherends. Complete 
solutions to theory of elasticity equations are presented and discussed. The manner 
in which the joint transmits the axial force, the bending moment and the shear force 
is presented. It is shown that the scarf joint does not feature stress concentrations 
and that there exists an approximate equivalence of displacements and stress states 
in scarf jointed and continuous elements. 

Keywords: timber beam, adhesive scarf joint, analytical model, two dimensional 
displacement-stress analysis, orthotropy, linear elasticity 

Introduction

The repair of timber structures including beams is of practical importance in civil 
engineering. An example of this would be the replacement of a biologically-cor-
roded, damaged end section of a floor beam or a rafter. Simple methods, such as 
when a new fragment is joined with the old beam by various types of wooden 
plates or steel profiles, have been in use for some time. They are effective but 
usually lead to a change in the external look of the elements, changes in the sta-
tic scheme and application of the materials which differ from the original ones. 
Such solutions are not acceptable in historical structures, where not only are the 
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architecture and decoration of great value, but also the structure itself. In such 
cases, the shapes, the appearance of the structural elements, the static schemes, 
materials, etc. must be preserved.

One possible solution allowing for the repair of a damaged element, while 
preserving its original shape, appearance, material, strength, and static scheme, 
is the use of an adhesive scarf joint (fig. 1).

Fig. 1. Adhesive scarf joints in wooden beams: a) scarf joint and its loading, 
b) scarf joints in a wide beam

It is important that in the considered joint the adhesive plane is parallel to the 
Y axis lying in the beam bending plane 0XY (fig. 1a). In a wide beam, a single 
scarf joint would be too long, therefore multiple joints can be used to keep them 
small – see fig. 1b. In such a case, it is assumed that the wide beam consists of 
several narrower segments with single scarf joints and each segment transmits an 
appropriate part of loading.

These types of joints are rarely used in wooden beam structures and, as tech-
nological solutions, they do not yet possess complete theoretical or experimental 
documentation.

In other cases, differing from the ones described in this paper, scarf joints 
are frequently used under axial tension [Erdogan, Ratawani 1971; Reddy, Sinha 
1975] or in beams under bending as joints in the form of micro-dovetails (finger 
joints), where the joint is perpendicular to the bending plane [Tomasiuk 1988; 
Smardzewski 1996].

In this paper, the general results previously presented by Rapp are used [2010a, 
2010b].
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The adhesive scarf joint model 

A timber beam with a rectangular cross-section consisting of two elements with 
thickness values g1 and g2 is considered. In general, various wood types may be 
used. The adherends are connected by an adhesive scarf joint. A set of co-ordi-
nates 0XYZ is associated with the beam. The plane 0XY represents the bending 
plane, according to fig. 1. The adhesive is a plane rectangle forming the angle φx 
with the bending plane 0XY. The adhesive projection on the plane 0XY is the 
rectangle ABCD with dimensions 2lx × 2ly (fig. 2).

Fig. 2. The adhesive scarf joint model

It is assumed that stresses across the adherend thickness are constant and form 
plane stress states parallel to the plane 0XY. Hence, the adherends are considered 
as plane stress elements parallel to the plane 0XY. The adherend thickness 
is measured in the direction normal to the plane 0XY. In the joint zone, the adhe-
rend thickness values g1(x) and g2(x) vary linearly from zero to g1 and g2 along the 
X axis and are constant along the Y axis.
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The adhesive thickness t is measured in the direction normal to its plane.
The adhesive is modelled as an isotropic linearly-elastic medium with Young’s 

modulus Es, the shear modulus Gs and Poisson’s ratio νs, where Es = 2(1 + νs)Gs. 
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Stresses in the adhesive are defined as interactions between adherend 1 and the 
adhesive. There are shear stresses τx = τx(x, y) and τy = τy(x, y) in the adhesive plane 
and the stress σN = σN(x, y) normal to the adhesive plane. The stress τx is parallel to 
the plane 0XZ, and the stress τy is parallel to the Y axis (fig. 3).

Fig. 3. Stresses in the adhesive

It is assumed that the stresses in the adhesive are constant across its thickness. 
The stresses presented in fig. 3 are positive. Due to the action of the shear stresses 
τx and τy, a shear deformation in the adhesive occurs. This leads to relative dis-
placements of layers in the adhesive in the direction parallel to the adhesive plane. 
The stress σN leads to axial strains normal to the adhesive plane. 

The displacements in adherends 1 and 2 of the scarf joint are defined by 
the functions u1 = u1(x, y) and u2 = u2(x, y) along the X axis and the functions 
υ1 = υ1(x, y) and υ2 = υ2(x, y) along the Y axis. The displacements u1, u2, υ1, and υ2 
are positive when they coincide with the positive orientation of the X and Y axes. 
It is assumed that the functions u1, u2, υ1, and υ2 are C2 – continuous with respect 
to variables x and y.

In the following, the functions of the displacements u1, u2, υ1, and υ2 are con-
sidered as unknowns and all the quantities related to the adhesive joint are ex-
pressed in their terms.

The loading of the adhesive joint can be represented by forces parallel 
to the plane 0XY distributed along the edges of the adherends. The loading is 
positive when its orientation coincides with the positive orientation of the X 
and Y axes.

There are axial forces, bending moments and shear forces in the beam cross-
-sections. They lead to the axial stresses p1x and p2x distributed linearly, and the 
shear stresses p1y and p2y with a parabolic distribution. Hence, it is assumed that 
the edges of the adherends can be loaded by axial forces, bending moments and 
shear forces. The positive orientation of these forces and the corresponding stress 
distributions are presented in fig. 4. The joint loading must remain in equilibrium.
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Fig. 4. Loading of the scarf joint adherends 

Constitutive equations for the adherends 

It is assumed that generally the adherends are made of different wood types, 
both orthotropic, and that the main axes of orthotropy coincide with the X and Y 
axes. In the plane stress state, the constitutive relations for adherends 1 and 2 are 
given by:
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where: k = 1 for adherend 1 and k = 2 for adherend 2.

An orthotropic material in the plane stress state is described by five material 
constants: two coefficients of longitudinal elasticity Ekx and Eky, one shear modulus 
of the set of equations (2) – (3) is symmetric, i.e. Gkxy, and two Poisson’s ratios νkxy, 
and νkyx. It is assumed that the matrix of coefficients:
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holds. Thus, four out of five material parameters are independent. 
Having solved the set of equations (2) – (4) with respect to stresses, one gets: 
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where: k = 1 for adherend 1 and k = 2 for adherend 2.

The material parameters Ekx, Eky, Gkxy, νkxy, and νkyx should be assumed to be 
dependent on the annular ring orientation in the beam cross-section. In the tree 
trunk model consisting of concentric annular rings, three anatomic directions are 
defined: parallel to the grains L, radial R and transverse T (fig. 5a). The mechanical 
properties of wood differ in these anatomic directions. At every point of the trunk 
model, the L, R, T axes are mutually orthogonal and can be treated as the local set 
of principal axes of orthotropy.

Fig. 5. Anisotropy of wood: a) the trunk model, b) particular cases of beam cross-
-section location in the trunk model

At an arbitrary point in the trunk model, the constitutive relations take the 
form:
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Examples of material constants for some types of wood determined experi-
mentally are presented in [Keylwerth 1951; Goodman, Bodig 1970; Neuhaus 
1994].

If the beam bending plane coincides with the radial direction (cross-section 1 
in fig. 5b) then it may be assumed that the beam orthotropy in the bending plane 
is defined by the L and R axes. In this case, the material constants in the equations 
(2) – (3) are Ekx = EL, Eky = ER, Gkxy = GLR, νkxy = νLR, and νkyx = νRL. If the coefficient 
matrix of the set of equations (2) – (3) is not symmetric, then it can be symme-
trised by an approximate assumption that νkxy = νRL (ER / EL).

If the beam bending plane coincides with the transverse direction ( cross-
section 2 in fig. 5b), then it may be assumed that the beam orthotropy in the bend-
ing plane is defined by the L and T axes. In this case, the material constants in the 
equations (2) – (3) are Ekx = EL, Eky = ET, Gkxy = GLT, νkxy = νLT, and νkyx = νTL. If the 
coefficient matrix of the set of equations (2) – (3) is not symmetric, then it can be 
symmetrised by an approximate assumption that νkxy = νTL (ET / EL).

If the beam bending plane is not parallel to either of the R or T axes (cross-
section 3 in fig. 5b), then it can be assumed that the wood can be modelled by 
a composite with a transverse isotropy. Then the direction L parallel to the grain 
is assumed, and the directions in the cross-sections perpendicular to the L axis are 
unified. In reality, this is the most frequent case. Transversely isotropic elements 
subjected to a plane stress state can be described using the elasticity moduli E0, 

mean, E90, mean, and Gmean introduced in Eurocode 5, where E0, mean – the mean elasticity 
modulus along the grain, E90, mean – the mean elasticity modulus across the grain 
and G mean – the mean shear modulus. It is assumed that Ekx = Ek,0, mean, Eky = Ek,90, 

mean, and Gkxy = Gk, mean in the equations (2) – (4).
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For coniferous wood, νTL = νRL = νkyx = 0.45, approximately. From the relation 
Ek,90, mean = Ek,0, mean /30 and the symmetry condition (5) νkxy = 0.015 can be deter-
mined (k = 1 for adherend 1 and k = 2 for adherend 2). 

Taking into account the Cauchy geometric relations:
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the constitutive equations (6) – (8) for adherends 1 and 2 can be given in the form:
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where: k = 1 for adherend 1 and k = 2 for adherend 2. 

Constitutive equations for the adhesive 

Stresses in the adhesive are due to differences between displacements of adhe-
rends 1 and 2. From the general considerations presented by Rapp [2010a, 2010b], 
relations between the stresses in the adhesive and the displacements of the adhe-
rends for a scarf joint can be written in the form:
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Displacement equations and boundary conditions 

A general formulation of the displacement equations and the boundary conditions 
for two-dimensional adhesive joints was presented by Rapp [2010a, 2010b]. For 
an adhesive scarf joint they take the form:
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where: k = 1 for adherend 1 and k = 2 for adherend 2.

The equations (22) – (25) represent a set of four elliptic partial differential 
equations of the second order, with varying coefficients where the displacement 
functions u1, u2, υ1, and υ2 for adherends 1 and 2 are unknown. From condition (5) 
and formulae (27) one gets βkx = βky. 

There is a normal loading p1x and a shear loading p1y acting on the edge x = lx 
of adherend 1, while on the edge x = – lx of adherend 2 – a normal loading p2x and a 
shear loading p2y are found (fig. 4). The edges: x = – lx for adherend 1 and x = lx for 
adherend 2 have zero thickness and are called sharp edges (fig. 3). The remaining 
edges are non-sharp.
The boundary conditions for non-sharp edges read:
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For the sharp edges, we get:
 – adherend 1, the edge x = – lx:
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 – adherend 2, the edge x = lx:
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In order to ensure the uniqueness of the solution to the boundary value pro-
blem, one should define in the displacement formulation, besides the static condi-
tions, the kinematic boundary conditions to constrain movement of the joint.

The boundary value problem (22) – (25), (29) – (36) is solved using the finite 
difference method. The finite difference mesh within the rectangle 2lx × 2ly cove-
ring the projection of the adhesive joint on the plane 0XY is shown in fig. 6.
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Fig. 6. The finite difference mesh on the projection of the adhesive joint

The finite difference mesh has a regular rectangular shape with the side lengths 
Δx and Δy. There are m nodes along the X axis ( j = 1, 2, ..., m), and n nodes along 
the Y axis (i = 1, 2, ..., n), while n, m ≥ 5. It is assumed that n and m are odd num-
bers. The unknown parameters in the finite difference method are the displace-
ments uki,j and υki,j at the nodes of the mesh.

Having determined the displacements u1, u2, υ1, and υ2, one can calculate the 
stresses in the adherends using the formulae (6) – (8). The stresses τx, τx and σN in 
the adhesive follow from (19) – (21).

A scarf joint loaded axially

Let us now consider an adhesive scarf joint between the adherends with dimen-
sions lx = 22.5 cm, ly = 10.25 cm, g1 = g2 = g = 4.5 cm made of identical wood with 
the following properties:

E1x = E2x = Ex = 1.2·106 N/cm2, E1y = E2y = Ey = 0.8·105 N/cm2

G1xy = G2xy = Gxy = 0.6·105 N/cm2, ν1xy = ν2xy = νxy = 0.03, ν1yx = ν2yx = νyx = 0.45
The adhesive has the thickness t = 0.05 cm and the material constants:

Es = 1.215·105 N/cm2, Gs = 0.45·105 N/cm2, νs = 0.35
The joint is subjected to the tensile forces N1 = – N2 = 1 N. Thus, the edges: 

x = lx for adherend 1 and x = – lx for adherend 2 are under the action of the uni-
formly distributed stresses: p1x = 0.(01084) N/cm2 and p2x = – 0.(01084) N/cm2, 
respectively. The problem is solved using the finite difference method with the 
mesh n × m = 21 × 45 (Δx = 1.02(27) cm, Δy = 1.025 cm). The kinematic bound-
ary conditions introduced for adherend 1 as the constraint of the node (i, j) = (11, 
23) in the direction of the X axis and the nodes (i, j) = (11, 13), (11, 33) in the 
direction of the Y axis.



16 Piotr Rapp

The displacements of the adherends at selected nodes of the finite difference 
mesh are given in table 1.

Table 1. The displacements of the adherends in a scarf joint loaded axially [cm] 

Displacements of adherend 1 Displacements of adherend 2 
i\j 1 23 45 1 23 45

u1 1
–2.0325·10-7 0 2.0325·10-7 u2 –2.0444·10-7 –1.1910·10-9 2.0206·10-7

υ1 –4.1667·10-8 –4.1667·10-8 –4.1667·10-8 υ2 –4.1667·10-8 –4.1667·10-8 –4.1667·10-8

u1 11
–2.0325·10-7 0 2.0325·10-7 u2 –2.0444·10-7 –1.1910·10-9 2.0206·10-7

υ1 0 0 0 υ2 0 0 0
u1 21

–2.0325·10-7 0 2.0325·10-7 u2 –2.0444·10-7 –1.1910·10-9 2.0206·10-7

υ1 4.1667·10-8 4.1667·10-8 4.1667·10-8 υ2 4.1667·10-8 4.1667·10-8 4.1667·10-8

The distributions of displacement functions u1, u2 and υ1, υ2 for the adherends 
are given in fig. 7. The displacements for both adherends are depicted in single 
drawings, because with the adopted scale, the differences between the appropriate 
displacement values are indistinguishable.

Fig. 7. The displacements in the adherends of an axially loaded scarf joint: 
a) displacements u1, u2, b) displacements υ1, υ2 

The remaining results of the calculations are:
 – the shear stresses τx and τy in the adhesive:

τx = 1.0733·10-3 N/cm2 = const, τy = 0 N/cm2

 – the normal stress σN in the adhesive (fig. 10):

σN = 1.0733·10-4 N/cm2 = const

 – the normal stresses σ1x, σ1y and the shear stress τ1xy in adherend 1:

σ1x = 1.0840·10-2 N/cm2 = const, σ1y = 0 N/cm2, τ1xy = 0 N/cm2
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 – the normal stresses σ2x, σ2y and the shear stress τ2xy in adherend 2: 

σ2x = 1.0840·10-2 N/cm2 = const, σ2y = 0 N/cm2, τ2xy = 0 N/cm2

The solution presented to the two-dimensional problem in the theory of elas-
ticity may be verified using a model of a one-dimensional axially loaded rod. 
Using the semi-inverse method of the theory of elasticity, one can define the dis-
placements u1, u2, υ1, and υ2 of the adherends with the following formulae:
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where: A, B and C are arbitrary constants to be derived from kinematic boundary 
conditions.

A simple substitution makes it possible to check that the functions (38) – (40) 
fulfill the equations (22) – (25) and the boundary conditions (29) – (36) with the 
constants Ex, Ey, Gxy, νxy, and νyx for both adherends, as well as the equilibrium con-
dition for the loading p1x + p2x = 0. 

Having substituted the relations (38) – (40) to the formulae (16) – (18), the 
stresses in the adherends can be found as:

xxx pyxyx 121 ),(),( ==σσ = const (41)

0),(),( 21 == yxyx yy σσ (42)

0),(),( 21 == yxyx xyxy ττ (43)

Knowing the displacement functions (38) – (40), one can determine the stress-
es in the adhesive τx, τy and σN using (19) – (21):
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The kinematic boundary conditions yield the zero constants A and C present 
in the equations (38) – (40), while the constant B is given by:
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The displacement functions for the adherends are given by:
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The functions (48) – (50) fulfill the equations (22) – (25), the static boundary 
conditions (29) – (36) and the kinematic boundary conditions. The uniqueness 
of the solution for the theory of elasticity problem makes it possible to conclude 
that the functions (48) – (50) are solutions to the two-dimensional problem of the 
scarf joint.

The stress state in the adherends and the adhesive, in the case of a scarf joint 
loaded axially with two adherends made of an identical material, does not depend 
on the adhesive thickness and its material parameters. Additionally, the stresses 
are identical to those in a skew section at the angle xö  in a one-dimensional con-
tinuous element, under a uniaxial stress state. 

The adhesive parameters influence only the difference between the displace-
ments of adherends 1 and 2, which is evident in formulae (48) and (49).

The equivalence of the one- and two-dimensional models, and the indepen-
dence of values and distributions of stresses with respect to the adhesive parame-
ters, do not occur in the case of a joint between adherends made from different 
materials, for a different loading than a uniform axial one or when g1 ≠ g2. 

For instance, let us look at a scarf joint loaded axially but located between two 
adherends made from different materials with the following parameters: 

E1x = 1.2·106 N/cm2, E1y = 0.8·105 N/cm2, G1xy = 0.6·105 N/cm2

ν1xy = 0.03, ν1yx = 0.45
E2x = 0.9·106 N/cm2, E2y = 0.45·105 N/cm2, G2xy = 0.5·105 N/cm2

ν2xy = 0.018, ν2yx = 0.36
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All the other data remain the same as in the case considered previously. 
Two-dimensional stress and displacement states are present in the adhesive 

and the adherends. To illustrate the problem, figs. 8–10 present the distributions 
of displacements and stresses in the adherends and in the adhesive. Note, that figs. 
9 c–f and 10 have a different scale to figs. 9 a, b.

The displacements u1, u2 and υ1, υ2 in fig. 8 for both adherends are depicted 
in single drawings, because with the adopted scale, the differences between the 
appropriate displacement values are indistinguishable.

Fig. 8. The displacements in the adherends of a scarf joint loaded axially in the case 
of different materials: a) displacements u1, u2, b) displacements υ1, υ2 

Fig. 9. The stresses in the adherends of a scarf joint loaded axially in the case of 
different materials: a) stress σ1x (values × 1), b) stress σ2x (values × 1), c) stress σ1y 
(values × 100), d) stress σ2y (values × 100), e) stress τ1xy (values × 1000), f) stress τ2xy 
(values × 1000)
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Fig. 10. The stresses in the adhesive of a scarf joint loaded axially in the case of different 
materials: a) stress τx (values × 10), b) stress τy (values × 10), c) stress σN (values × 10)

A scarf joint loaded by a bending moment

Let us now consider a scarf joint loaded by the bending moments M1 = – M2 = M = 
= 1 N·cm resulting from the linearly distributed stresses on the edge x = lx of 
adherend 1 and on the edge x = – lx of adherend 2 (fig. 11). The dimensions, the 
material parameters and the finite difference mesh are assumed identical to the 
previously considered case of a scarf joint loaded axially. The kinematic boundary 
conditions are imposed on adherend 1 by constraining its node (i, j) = (11, 23) in 
the direction of the X axis and the nodes (i, j) = (11, 13), (11, 33) in the direction 
of the Y axis.

Now a complete solution to the equations of the theory of elasticity will be 
presented. It will contain displacements and stresses in the adherends and in the 
adhesive.

Fig. 11. Loading acting on the adherends of a scarf joint subjected to a bending mo-
ment 

In the following, in the captions of the tables and figures presenting the com-
plete solution, the flexibility of the adhesive is emphasized, to differentiate clearly 
from the case with an undeformable adhesive.

The distributions of displacement functions u1, u2 and υ1, υ2 for the adherends 
are given in fig. 12. The displacements for both adherends are depicted in single 
drawings, because with the adopted scale, the differences between the appropriate 
displacement values are indistinguishable.
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Fig. 12. The displacements in adherends of a joint with a flexible adhesive loaded by 
the bending moment: a) displacements u1, u2, b) displacements υ1, υ2 

The values of the adherend displacements at selected nodes of the finite diffe-
rence mesh are given in table 2. 

The values of stresses at selected points in adherends 1 and 2 of a joint with 
a flexible adhesive loaded by the moment are given in tables 3 and 4. 

Table 2. The displacements in adherends of a joint with a flexible adhesive loaded by 
the bending moment [cm]

Displacements of adherend 1 Displacements in adherend 2 
i\j 1 23 45 i\j 1 23 45

u1 1
5.937·10-8 –1.646·10-10 –5.970·10-8 u2 1

5.971·10-8 1.800·10-10 –5.935·10-8

υ1 5.840·10-8 –7.379·10-9 5.837·10-8 υ2 5.840·10-8 –7.379·10-9 5.837·10-8

u1 11
0 0 0 u2 11

0 0 0
υ1 5.213·10-8 –1.346·10-8 5.209·10-8 υ2 5.213·10-8 –1.346·10-8 5.209·10-8

u1 21
–5.937·10-8 1.646·10-10 5.97·10-8 u2 21

–5.971·10-8 –1.800·10-10 5.935·10-8

υ1 5.840·10-8 –7.379·10-9 5.837·10-8 υ2 5.840·10-8 –7.379·10-9 5.837·10-8

Table 3. The stresses in adherend 1 of a scarf joint with a flexible adhesive loaded by 
the bending moment [N/cm2]

Stresses
i\j 1 2 23 44 45

σx

1
–3.166·10-3 –3.170·10-3 –3.175·10-3 –3.170·10-3 –3.173·10-3

σy 0 0 0 0 0
τxy 0 0 0 0 0
σx

2
–2.856·10-3 –2.856·10-3 –2.857·10-3 –2.856·10-3 –2.855·10-3

σy 3.686·10-6 2.275·10-6 –1.722·10-7 2.263·10-6 3.709·10-6

τxy –2.436·10-6 –2.940·10-6 –9.586·10-7 9.203·10-7 0
σx

11
0 0 0 0 0

σy 0 0 0 0 0
τxy –1.954·10-6 –2.032·10-6 –1.020·10-6 –9.308E-9 0
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Table 3. Continued

i\j 1 2 23 44 45
σx

20
2.856·10-3 2.856·10-3 2.857·10-3 2.856·10-3 2.855·10-3

σy –3.686·10-6 –2.275·10-6 1.722·10-7 –2.263·10-6 –3.709·10-6

τxy –2.436·10-6 –2.940·10-6 –9.586·10-7 9.203·10-7 0
σx

21
3.166·10-3 3.170·10-3 3.175·10-3 3.170·10-3 3.173·10-3

σy 0 0 0 0 0
τxy 0 0 0 0 0

Table 4. The stresses in adherend 2 of a scarf joint with a flexible adhesive loaded by 
the bending moment [N/cm2]

Stresses
i\j 1 2 23 44 45

σx

1
–3.173·10-3 –3.170·10-3 –3.175·10-3 –3.170·10-3 –3.166·10-3

σy 0 0 0 0 0
τxy 0 0 0 0 0
σx

2
–2.855·10-3 –2.856·10-3 –2.857·10-3 –2.856·10-3 –2.856·10-3

σy 3.709·10-6 2.263·10-6 –1.722·10-7 2.275·10-6 3.686·10-6

τxy 0 –9.203·10-7 9.586·10-7 2.940·10-6 2.436·10-6

σx

11
0 0 0 0 0

σy 0 0 0 0 0
τxy 0 9.044·10-9 1.020·10-6 2.032·10-6 1.954·10-6

σx

20
2.855·10-3 2.856·10-3 2.857·10-3 2.856·10-3 2.856·10-3

σy –3.709·10-6 –2.263·10-6 1.722·10-7 –2.275·10-6 –3.686·10-6

τxy 0 –9.203·10-7 9.586·10-7 2.940·10-6 2.436·10-6

σx

21
3.173·10-3 3.170·10-3 3.175·10-3 3.170·10-3 3.166·10-3

σy 0 0 0 0 0
τxy 0 0 0 0 0

Table 5. The stresses in the flexible adhesive of a joint loaded by the bending moment [N/cm2]

Stresses
i\j 1 23 45

τx

1
–3.132·10-4 –3.105·10-4 –3.132·10-4

τy –3.240·10-7 0 3.240·10-7

σN –3.132·10-5 –3.105·10-5 –3.132·10-5

τx

11
0 0 0

τy –2.031·10-7 0 2.031·10-7

σN 0 0 0
τx

21
3.132·10-4 3.105·10-4 3.132·10-4

τy –3.240·10-7 0 3.240·10-7

σN 3.132·10-5 3.105·10-5 3.132·10-5
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The stress distributions in adherends 1 and 2 of a joint with a flexible adhesive 
are presented in fig. 13.

 
Fig. 13. The stresses in the adherends of a joint with a flexible adhesive loaded by 
the bending moment: a) stresses σ1x, σ2x, b) stresses σ1y, σ2y (values × 500), c) stress τ1xy 
(values × 500), d) stress τ2xy (values × 500)

The values of stresses in the flexible adhesive of a joint loaded by the moment 
are given in table 5, and the corresponding distributions – in fig. 14. 

Fig. 14. The stresses in the flexible adhesive of a joint loaded by the bending moment: 
a) stress τx, b) stress τy (values × 1500), c) stress σN (values × 10)

In the adherends of the considered scarf joint, the normal stresses σ1x, σ2x domi-
nate. They are equal to one another, constant along x and linear along y with an 
accuracy of 0.28%. The stress state in the adhesive itself is dominated by the shear 
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stresses τx and σN, which are also approximately constant along x and linear along 
y. Due to the adhesive flexibility υ1 ≠ υ2. In this case, there are non-zero normal 
σky and shear τkxy stresses (fig. 13b–d) in the adherends, and non-zero shear stress 
τy in the adhesive (fig. 14b). However, the stresses σky and τkxy in the adherends are 
approx. 1000 times smaller than the stress σkx, and the stress τy in the adhesive is 
approx. 1500 times smaller than the stress τx. Hence, it can be assumed with suf-
ficient accuracy that the stress states in the adherends of a joint with a flexible ad-
hesive loaded by the bending moment M, are identical to the one in a continuous 
element subjected to the moment M. For M = 1 N·cm the outermost normal stress 
in the cross-section g × 2ly of the continuous beam is σx = ±3.173·10-3 N/cm2. 
These values differ by approx. 0.28% from the outermost stresses σ1x, σ2x in the 
adherends of a joint with a flexible adhesive (tables 3 and 4).

If the adhesive flexibility decreases, then the difference between the adherend 
displacements decreases, too. In the limiting case, for the undeformable adhesive, 
a physical interpretation ensures the equality of these displacements. This conclu-
sion can be drawn from equations (22) – (25), too. Indeed, when one divides these 
equations by Gs and lets Gs → ∞, then the identities u1 = u2 and υ1 = υ2 result. Thus, 
it may be assumed, that in the limiting case, the values and the distributions of 
stresses in the adherends of a scarf joint are identical, as in the continuous beam 
loaded by the bending moment M. If we denote these stresses by σx, σy, τxy, then 
we may write down:

32
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Thus, the continuous element may serve as an approximate model of a scarf 
joint with a flexible adhesive. Indeed, it can be considered as a scarf joint with 
an undeformable adhesive. The undeformable adhesive is represented be a skew 
section in the continuous element. That skew section is oriented in the continuous 
element in the same way as the flexible adhesive in the scarf joint. 

The displacements u = u1 = u2 and υ = υ1 = υ2 of the continuous element with 
an undeformable adhesive fulfill the following set of equations:
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which results from substitution of the formulae (51) – (53) to the constitutive 
equations (16) – (18) in the case of the material properties Ex, Ey, Gxy, νxy, νyx.

Solving the equations (54) and (56) with respect to u and υ, one gets: 
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where: A, B, and C are arbitrary constants. 

In the case of Gs = ∞, the functions u1, u2, υ1, υ2 presented above fulfill the 
equations (22) – (25) and the boundary conditions (29) – (36).

The constants A, B, and C follow from the kinematic boundary conditions, 
which can be expressed in co-ordinates as: 

 – node (i, j) = (11,23), co-ordinates x = 0 and y = 0 → u(0, 0) = 0
 – node (i, j) = (11,13), co-ordinates x = –x0 and y = 0 → υ(–x0, 0) = 0
 – node (i, j) = (21,33), co-ordinates x = x0 and y = 0 → υ(x0, 0) = 0,

where: x0 = 10.2(27) cm.

These conditions lead to A = 0, B = 0 and

3

2
0

4
3M

yxglE
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The displacements in the continuous element loaded by the bending moment, 
calculated from (57) – (59) are given in table 6. Comparison of the values presented 
in Tables 2 and 6 makes it possible to assess that the maximal displacements u1, u2 
of the adherends of the joint with the flexible adhesive and the maximal displace-
ment u of the continuous element are equal, with an accuracy of approx. 0.35%. 
Similarly, it can be assessed that the maximal displacements υ1, υ2 of the adher-
ends of the joint with the flexible adhesive and the maximal displacement υ of the 
continuous element are equal with an accuracy of approx. 0.85%.
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Table 6. The displacements of the continuous element loaded by the bending moment [cm]

Displacements
i\j 1 23 45

u
1

5.949·10-8 0 –5.949·10-8

υ 5.790·10-8 –7.393·10-9 5.790·10-8

u
11

0 0 0
υ 5.180·10-8 –1.349·10-8 5.180·10-8

u
21

–5.949·10-8 0 5.949·10-8

υ 5.790·10-8 –7.393·10-9 5.790·10-8

Normal and shear stresses are present in the continuous element – in the 
skew section defined by the adhesive plane. However, in the limiting case 
Gs = ∞, the shear stresses in the skew section (undeformable adhesive) cannot 
be determined from the formulae (19) – (20) because in the view of u1 – u2 = 0, 
υ1 – υ2 = 0 and Gs = ∞, indeterminate symbols of the form ∞ · 0 are found. The 
shear stresses in the undeformable adhesive can be calculated from the equations 
(22) – (25), which do not explicitly include the differences of the displacements 
u1 – u2, υ1 – υ2 and the value Gs. If we determine u1 – u2, υ1 – υ2 from the formulae 
(19) – (20) and substitute them to (22) – (25), then for the parameters Ex, Ey, Gxy, 
νxy, νyx the following relations follow:
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Substitution of the functions u1, u2, υ1, and υ2 given in (57) – (59) to the equa-
tions (60) and (61) or (62) and (63) leads to the relations defining the stresses in 
the undeformable adhesive in the continuous element:

xxxx yxyx ϕϕστ cossin),(),( = (66)

0),( =yxyτ (67)

where: ),( yxxσ  is given by (51).

The formulae (21) and (66) yield the relation for the normal stress in the un-
deformable adhesive: 

),(),( yxyx xN σσ = sin2φx (68)

The formulae (66) – (68) can also be derived in an elementary manner, consi-
dering the equilibrium conditions of the adherend in the vicinity of the adhesive. 
The stresses values for the undeformable adhesive in the continuous element fol-
lowing from (66) – (68) are given in table 7.

Table 7. The stresses for the undeformable adhesive in the continuous element loaded 
by the bending moment [N/cm2]

Stresses
i\j 1 23 45

τx

1
–3.141·10-4 –3.141·10-4 –3.141·10-4

τy 0 0 0
σN –3.141·10-5 –3.141·10-5 –3.141·10-5

τx

11
0 0 0

τy 0 0 0
σN 0 0 0
τx

21
3.141·10-4 3.141·10-4 3.141·10-4

τy 0 0 0
σN 3.141·10-5 3.141·10-5 3.141·10-5

Comparison of the values given in tables 5 and 7 makes it possible to assess 
with an accuracy of approx. 0.3% that the maximal stresses in the flexible adhesive 
and in the undeformable adhesive in the continuous element are equal.

It can be concluded that the values and distributions of the displacements and 
stresses in the considered case of the scarf joint with the flexible adhesive are 
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similar to those in the case of the continuous plane stress element (in the scarf 
joint with the undeformable adhesive) subjected to the bending moment in the 
plane 0XY. The smaller is the adhesive flexibility, the better the approximation. 

A scarf joint loaded by a shear force

The way in which a shear force is transmitted through a scarf joint can be illu-
strated, when the force is constant along the joint. Let us assume that adherend 
1 is subjected to the shear force –T at the edge x = lx, and adherend 2 – to the shear 
force T at the edge x = – lx. The joint loaded in this way has to be equilibrated, e.g. 
by additional bending moments M = T·lx, according to fig. 15a. 

Fig. 15. A scarf joint subjected to a shear force and a bending moment 

In the following, the load of T = 1.0 N is assumed in the form of a parabolic 
distributed shear stress, and the bending moment M = Tlx in the form of a linearly 
distributed normal stress (fig. 15b). All the remaining data are the same as in the 
previous case of the joint loaded by the bending moment.

The distributions and values of the displacements u1, u2, υ1, and υ2 for a scarf 
joint with a flexible adhesive are presented in fig. 16 and in table 8.

Fig. 16. The displacements in adherends of a joint with a flexible adhesive loaded by the 
shear force and the bending moment: a) displacements u1, u2, b) displacements υ1, υ2 
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Table 8. The displacements in adherends of a joint with a flexible adhesive loaded by 
the shear force and the bending moment [cm] 

Displacements in adherend 1 Displacements in adherend 2
i\j 1 23 45 i\j 1 23 45

u1 1
–2.507·10-6 –1.841·10-6 –2.514·10-6 u2 1

–2.514·10-6 –1.841·10-6 –2.507·10-6

υ1 –5.666·10-7 2.178·10-10 5.671·10-7 υ2 –5.667·10-7 2.479·10-10 5.671·10-7

u1 11
0 0 0 u2 11

0 0 0
υ1 –4.081·10-7 –6.661·10-10 4.068·10-7 υ2 –4.063·10-7 1.13·10-9 4.086·10-7

u1 21
2.507·10-6 1.841·10-6 2.514·10-6 u2 21

2.514·10-6 1.841·10-6 2.507·10-6

υ1 –5.666·10-7 2.178·10-10 5.671·10-7 υ2 –5.667·10-7 2.479·10-10 5.671·10-7

The distributions of stresses in the adherends of a scarf joint with a flexible 
adhesive loaded by the shear force and the bending moment are presented in fig. 
17. The particular stresses are represented in single figures, because the differen-
ces between their values for both adherends are negligible and indistinguishable 
with the adopted scale.

Fig. 17. The stresses in the adherends of a scarf joint with a flexible adhesive loaded 
by the shear force and the bending moment: a) stresses σ1x, σ1x, b) stresses σ1y, σ1y 
(values × 100), c) stresses τ1xy, τ1xy

The values of the stresses in the adherends of a scarf joint with a flexible 
adhesive loaded by the shear force and the bending moment are given 
in table 9.

Table 9. The stresses in the adherends of a scarf joint with a flexible adhesive loaded 
by the shear force and the bending moment [N/cm2]

Adherend 1 Adherend 2
i\j 1 23 45 1 23 45

σx

1
7.034·10-2 –2.059·10-4 –7.139·10-2 σx 7.139·10-2 2.060·10-4 –7.034·10-2

σy 0 0 0 σy 0 0 0
τxy 0 0 0 τxy 0 0 0
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Table 9. Continued

i\j 1 23 45 1 23 45
σx

2
6.338·10-2 –1.842·10-4 –6.425·10-2 σx 6.425·10-2 1.843·10-4 –6.338·10-2

σy –6.312·10-4 6.539·10-6 6.329·10-4 σy –6.329·10-4 –6.522·10-6 6.312·10-4

τxy –2.810·10-3 –3.090·10-3 –3.089·10-3 τxy –3.089·10-3 –3.090·10-3 –2.810·10-3

σx

11
0 0 0 σx 0 0 0

σy 0 0 0 σy 0 0 0
τxy –1.623·10-2 –1.624·10-2 –1.626·10-2 τxy –1.626·10-2 –1.624·10-2 –1.623·10-2

σx

20
–6.338·10-2 1.842·10-4 6.425·10-2 σx –6.425·10-2 –1.843·10-4 6.338·10-2

σy 6.312·10-4 –6.539·10-6 –6.329·10-4 σy 6.329·10-4 6.522·10-6 –6.312·10-4

τxy –2.810·10-3 –3.090·10-3 –3.089·10-3 τxy –3.089·10-3 –3.090·10-3 –2.810·10-3

σx

21
–7.034·10-2 2.059·10-4 7.139·10-2 σx –7.139·10-2 –2.060·10-4 7.034·10-2

σy 0 0 0 σy 0 0 0
τxy 0 0 0 τxy 0 0 0

The values of the stresses in the flexible adhesive of a scarf joint loaded by the 
shear force and the bending moment are presented in table 10, and the correspon-
ding distributions – in fig. 18.

Table 10. The stresses in the flexible adhesive of a scarf joint loaded by the shear force 
and the bending moment [N/cm2]

Stresses
i\j 1 23 45

τx

1
6.917·10-3 0 –6.917·10-3

τy 6.784·10-5 –2.707·10-5 6.784·10-5

σN 6.917·10-4 0 –6.917·10-4

τx

11
0 0 0

τy –1.614·10-3 –1.617·10-3 –1.614·10-3

σN 0 0 0
τx

21
–6.917·10-3 0 6.917·10-3

τy 6.784·10-5 –2.707·10-5 6.784·10-5

σN –6.917·10-4 0 6.917·10-4

Fig. 18. The stresses in the flexible adhesive of a scarf joint loaded by the shear force 
and the bending moment: a) stress τx, b) stress τy, c) stress σN (values × 10)
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Comparison of figs. 17a, b and figs. 13 a, b leads to the conclusion that the 
normal stresses σkx and σky shown in figs. 17a and b result from the bending mo-
ment M = Tlx, while the shear stresses τkxy are due to the action of the shear force 
T only. Thus, the action of the shear force can be separated, and in this way, how 
the joint transmits the shear force can be assessed.

As in the case of the joint loaded by the bending moment, in the scarf joint 
with the flexible adhesive loaded by the shear force and the bending moment, the 
distribution of the stresses in the adherends are similar to those in the case of the 
continuous plane stress element (in the joint with the undeformable adhesive). 
The stresses σx, σy, and τxy in the adherends of the joint with the undeformable 
adhesive can be given by the following formulae:
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The displacements u = u1 = u2 and υ = υ1 = υ2 of the continuous element with 
the undeformable adhesive fulfill the set of equations:
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which results from substitution of the relations (69) – (71) to the constitutive 
equations (16) – (18) for the material parameters Ex, Ey, Gxy, νxy, νyx. Equations 
(72) – (74) can be solved in a similar way to equations (54) – (56) to get:
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where: A, B, C are arbitrary constants.

For the undeformable adhesive (Gs = ∞) and the displacements u1, u2, υ1, and 
υ2 given by (75) and (76), equations (22) – (25) and the boundary conditions (29) 
– (36) are fulfilled as identities.

The kinematic boundary conditions expressed in the co-ordinates take the 
same form as in the previous example:

u(0, 0) = 0, υ(–x0, 0) = 0, υ(x0, 0) = 0,

where x0 = 10.2(27) cm. They yield B = 0, C = 0 and

3

2
0

4 yxglE
TxA = (77)

The displacements of the continuous element loaded by the shear force and 
the bending moment resulting from (75) – (77) are given in table 11. 

Comparison of the values given in tables 8 and 11 makes it possible to 
assess that the maximal displacements u1 and u2 of the adherends of the joint with 
the flexible adhesive and the maximal displacement u of the continuous element 
coincide with an accuracy of approx. 0.8%. Similarly, it can be assessed that the 
maximal displacements υ1, υ2 of the adherends of the joint with the flexible adhe-
sive and the maximal displacement υ of the continuous element, coincide with an 
accuracy of approx. 7.3%. It should be noted, that the displacements υ1, υ2, and υ 
are about 5 times smaller than the displacements u1, u2, and u. 

Table 11. The displacements in the continuous element loaded by the shear force and 
the bending moment [cm]

Displacements
i\j 1 23 45

u
1

–2.496·10-6 –1.877·10-6 –2.496·10-6

υ –5.257·10-7 0 5.257·10-7

u
11

0 0 0
υ –3.885·10-7 0 3.885·10-7

u
21

2.496·10-6 1.877·10-6 2.496·10-6

υ –5.257·10-7 0 5.257·10-7

Substitution of the functions given by (75) and (76) to the equations (60) and 
(61) or (62) and (63) leads the formulae for the shear stresses in the undefor- 
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mable adhesive for the continuous element loaded by the shear force and the 
moment:

xxxx yxyx ϕϕστ cossin),(),( = (78)

xxyy yxyx ϕττ sin),(),( = (79)

The relations (21) and (78) lead to the expression for the normal stress in the 
undeformable adhesive:

 ),(),( yxyx xN σσ = sin2φx (80)

The stresses in the undeformable adhesive of the continuous element loaded 
by the shear force and the bending moment are presented in table 12.

Comparison of the values in tables 10 and 12 makes it possible to assess that 
the maximal stresses in the flexible adhesive of the scarf joint loaded by the shear 
force and the bending moment, and the maximal stresses in the undeformable 
adhesive in the continuous element loaded likewise, coincide with an accuracy of 
approx. 2% in the case of τx and σN,and approx. 0.25% in the case of τy.

Table 12. The stresses in the undeformable adhesive of the continuous element loaded 
by the shear force and the bending moment [N/cm2]

Stresses
i\j 1 23 45

τx

1
7.068·10-3 0 –7.068·10-3

τy 0 0 0
σN 7.068·10-4 0 –7.068·10-4

τx

11
0 0 0

τy –1.618·10-3 –1.618·10-3 –1.618·10-3

σN 0 0 0
τx

21
–7.068·10-3 0 7.068·10-3

τy 0 0 0
σN –7.068·10-4 0 7.068·10-4

The calculations carried out lead to the conclusion that the considered scarf 
joint with the flexible adhesive loaded by the shear force and the bending moment, 
features the values of the displacements and the distributions of stresses in the 
adhesive and the adherends similar to those in the continuous plane stress element 
(in the joint with the undeformable adhesive) loaded likewise. In particular, the di-
stributions of the stresses τkxy in the adherends and the stress τy in the adhesive due 
to the action of the shear force are parabolic with an accuracy of approx. 0.25%. 
The smaller is the adhesive flexibility, the better the approximation.
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Conclusions

In a scarf joint loaded axially, where both adherends are made of the same ma-
terial, the stress states in the adherends and the adhesive do not depend on the 
adhesive thickness or its material parameters, and are identical to those in the 
continuous element under a uniaxial stress state. The adhesive parameters only 
influence the difference between the adherend displacements.

The equivalence of the one-dimensional and two-dimensional models, and the 
independence of values and distributions of stresses with respect to the adhesive 
parameters, do not exist when: a scarf joint is made of two different materials, 
adherends are not loaded uniformly and axially or in the case of adherends with 
differing thicknesses.

A general conclusion may be formulated that a scarf joint with an adhesive of 
little flexibility between two adherends made of the same material and of the same 
thickness, transmits axial forces, bending moments and shear forces in the same 
or in a similar way to a continuous element considered as the scarf joint with an 
imaginary undeformable adhesive.

In general, the smaller is the adhesive flexibility, the smaller the difference 
between the solution to the two-dimensional problem of the scarf joint with the 
flexible adhesive and the analytical solution to the joint with the undeformable 
adhesive. Thus, an approximate equivalence of displacements and stress states 
between an element made of two adherends with a scarf joint and the continuous 
element occurs.

This final statement is not obvious, because in a scarf joint loaded in the way 
discussed previously, the decreasing adhesive flexibility leads to a change in the 
nonlinear displacements and stress distributions in the adhesive to linear ones, 
corresponding to the continuous element considered as the scarf joint with an 
imaginary undeformable adhesive. On the other hand, in the joint with non-sharp 
edges, this behaviour is reversed – due to a decrease in the adhesive flexibility in 
the vicinity of the loaded edges, the stress concentrations are more pronounced 
and the displacement and stress distributions become increasingly non-linear.
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