PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact resistant concrete elements with nonconventional reinforcement

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Elementy betonowe odporne na uderzenia z niekonwencjonalnym zbrojeniem
Języki publikacji
EN
Abstrakty
PL
Przedmiotem monografii jest analiza doświadczalna oraz numeryczna próbek oraz elementów wykonanych z kompozytu fibrobetonowego z udziałem kruszywa odpadowego (sortowany gruz ceglany). Badania doświadczalne oraz symulacje numeryczne przeprowadzone zostały w ramach grantu Narodowego Centrum Nauki pt. “Impact resistant concrete elements with nonconventional reinforcement” (2011/01/B/ST8/06579) i dotyczyły one badania własności wytrzymałościowych materiału oraz powstawiania oraz rozwoju zniszczeń w płytach z fibrobetonu obciążonych udarowo. Monografia składa się z sześciu rozdziałów, uzupełnionych o odpowiednią bibliografię. Rozdział pierwszy (Introduction) dotyczy sformułowania problemu będącego przedmiotem pracy. Uzasadniono w nim potrzebę wprowadzenia do wytwarzania elementów betonowych materiałów odpadowych, zastępujących tradycyjne kruszywo mineralne, motywując to zmniejszaniem się zasobów tych kruszyw, zwiększaniem kosztów transportu oraz względami związanymi z ochroną środowiska i krajobrazu. Wprowadzenie zbrojenia rozproszonego w postaci włókien stalowych umożliwia zdaniem autorów monografii uzyskanie materiału odpornego na obciążenia nagłe (uderzenia, wybuchy), zdolnego do przenoszenia naprężeń rozciągających powstających podczas propagacji fali w materiale. Rozdział drugi (Used materials and research programme) poświęcony jest opisowi zastosowanych w badaniach materiałów oraz założonemu programowi badań dotyczących wyznaczania podstawowych parametrów charakteryzujących materiały.W rozdziale trzecim (Mechanical properties) podano opis i rezultaty wykonanych badań podstawowych charakterystyk materiałowych fibrobetonu z udziałem kruszywa odpadowego. Rozdział czwarty (Material models for concrete under impulsive load) zawiera przegląd konstytutywnych modeli materiałowych stosowanych w analizie numerycznej ustrojów betonowych poddanych obciążeniom o charakterze nagłym (impulsowym). Skupiono się na modelach zawierających kryteria powstawiania i rozwoju zniszczeń w materiale, oraz kryterium całkowitego zniszczenia (tj. utraty możliwości przenoszenia obciążeń). Impact resistant concrete elements with nonconventional reinforcement 91 Rozdział piąty (Impact resistance of circular plates – experimental and numerical study) stanowi opis zasadniczej części badań objętych projektem, tj. testom eksperymentalnym I symulacjom numerycznym odpowiedzi dynamicznej kołowych płyt o średnicy 1,0 m i grubości 0,10 m, wykonanych z fibrobetonu z udziałem kruszywa odpadowego i obciążonych swobodnym spadkiem ciężaru 40 kg z wysokości 1,0 m. Wykonano w sumie 70 płyt w 10 wariantach różniących się rodzajem włókien oraz stopniem zbrojenia. Zbadano zależność intensywności rozwoju zniszczeń w poszczególnych płytach od ilości uderzeń, starając się doprowadzić badania do momentu całkowitej utraty nośności płyty. Na podstawie przeprowadzonych badań eksperymentalnych wykonano symulacje numeryczne przy zastosowaniu metody elementów skończonych, wykorzystując opracowany algorytm generacji losowego rozkładu włókien w objętości elementu betonowego. Analizy wykonano w środowisku systemu elementów skończonych ABAQUS/Explicit, stosując nieliniowy sprężystoplastyczny model materiałowy ze zniszczeniem dla opisu własności betonu. Wyniki symulacji numerycznych są zgodne z rezultatami uzyskanymi na drodze eksperymentalnej. Rozdział szósty (Conclusions and final remarks) zawiera krótkie podsumowanie uzyskanych rezultatów oraz uwagi dotyczące samego analizowanego zagadnienia. Monografia uzupełniona jest o krótkie notki biograficzne autorów.
Rocznik
Strony
136--136
Opis fizyczny
Bibliogr. 172 poz., tab., rys.
Twórcy
autor
  • Politechnika Koszalińska
autor
  • Politechnika Koszalińska
autor
  • Politechnika Koszalińska
autor
  • Politechnika Koszalińska
Bibliografia
  • 1. Allix O., Hild F., (Eds.).: Continuum Damage Mechanics of Materials and Structures, Elsevier New York, 2002.
  • 2. Altenbach H., Skrzypek J.J.: Creep and Damage in Materials and Structures, CISM International Centre for Mechanical Sciences. Courses and Lectures, NR 399, Springer Verlag, Wien, 1998.
  • 3. Alves M., Yu J., Jones N.: On the elastic modulus degradation in continuum damage mechanics. Computers and Structures, Vol. 76, 703-712, 2000.
  • 4. Alwan J.M. et al.: Effect of mechanical clamping on the pull-out response of hooked steel fibres embedded in cementitious matrices. Concrete Science and Engineering, Vol.1, 15-25 (1999).
  • 5. Bažant Z.P., Jirăsek M.: Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress. J. Eng. Mech., 1119-1149, 2002.
  • 6. Belytschko T., Liu W.K., Moran B.: Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, 2000.
  • 7. Bentur A., Igarashi S., Kovler K.: Prevention of autogenous shrinkage in high strength concrete by internal curing using wet lightweight aggregates. Cement and Concrete Research 31 (11), 1587–1591 (2001).
  • 8. Betten J.: Application of tensor functions in Continuum Damage Mechanics. Int. J. Damage Mech., Vol.1, 47-59, 1992.
  • 9. Borovikov I. P., Borovikov V. P.: STATISTICA: Data Preparation and Analysis. Moscow, Filini. 1998.
  • 10. Borovikov I.P., Borovikov V.P.: STATISTICA: Data Preparation and Analysis. Filini. Moscow (1998).de Brito J., Pereira A.S., Correia J.R.: Mechanical behaviour of nonstructural concrete made with recycled ceramic aggregates. Cement and Concrete Composites. Vol. 27 (4), 429–433 (2005).
  • 11. Cailleux E., Cutard T., Bernhart G.: Pullout of steel fibres from a refractorycastable, experiment and modelling. Mech Mater 37, 427–445,(2005);
  • 12. Carol I., Rizzi E., Willam K.: A unified theory of elastic degradation and damage based on a loading surface. International Journal of Solids and Structures, Vol. 31, 2853-2865, 1994.
  • 13. Cauvin A., Testa R.B.: Elastoplastic material with isotropic damage. International Journal of Solids and Structures, Vol. 36, 727-746, 1999.
  • 14. Cervera M., Oliver J., Faria R.: Seismic evaluation of concrete dams via continuum damage models. Earthquake Engineering and Structural Dynamics, Vol. 24, 1225-1245, 1995.
  • 15. Chaboche J.L.: Le concept de contrainte effective appliquẻ ả l'elasticitẻ et ả la viscoplasticitẻ en prẻsence d' un endommagement anisotrope. In: Mechanical Behaviour of Anisotropic Solids, Boehler J.P. (ed.), Editions CNRS, Paris, 737-760, 1982.
  • 16. Chandra S.: Waste Materials used in concrete manufacturing. Standard Publishers Distributors. Delhi 2002.
  • 17. Chanvillard G.: Modeling the pullout of wire-drawn steel fibers. Cem Concr Res 29,1027–1037, (1999).
  • 18. Chen W.F.: Constitutive Equations for Engineering Materials—Plasticity and Modeling. vol. 2. Elsevier, Amsterdam, 1994.
  • 19. Chen X.F., Chow C.L.: On damage strain energy release rate. Int. J. Damage Mech., Vol. 4, 251-263, 1995.
  • 20. Chow C.L., Lu T.J.: An analytical and experimental study of mixed-mode ductile fracture under nonproportional loading. Int. J. Damage Mech., Vol. 1, 191-236, 1992.
  • 21. Chrzanowski M.: Damage Parameter in Continuum Damage Mechanics. Mech.Teor.Stos., Vol. 16, 151-167, 1978 (in Polish).
  • 22. Chrzanowski M.: Strain Energy Governed Damage Law For a Visco-Plastic Material. Eng.Trans, Vol. 39, 389-418, 1991.
  • 23. Cichocki K., Adamczyk R., Ruchwa, M.: Material modelling for structures subjected to impulsive loading. Computer Assisted Mechanics and Engineering Sciences, Vol. 6(2), 231-244 (1999).
  • 24. Cichocki K., Domski J., Katzer J., Ruchwa, M.: The use of waste aggregate in building industry. In: Nordic Symposium for Energy Efficiency in Buildings. Oulu, Finland, 27 September 2013. [Online]. Available from: http://www.oamk.fi/hankkeet/ieeb/final_symposium/materials/cichocki-1.pdf (2013).
  • 25. Cichocki K., Ruchwa M.: Badania eksperymentalne i analiza numeryczna niekonwencjonalnie zbrojonych elementów betonowych. In: XIII Konferencja Naukowo-Techniczna TECHNIKI KOMPUTEROWE W INŻYNIERII 2014, TKI-2014. STRESZCZENIA. Licheń Stary, Poland, 6-9 May 2014. Warsaw: MilitaryUniversity of Technology. 39-40. (2014).
  • 26. Cichocki K., Ruchwa M.: Integrity analysis for multistorey buildings. Ovidius University Annals - Constantza. Series: Civil Engineering. Constantza, Romania: Ovidius University Press, Vol. 15, 45-52 (2013).
  • 27. Cichocki K., Ruchwa M.: Numerical analysis of fibre reinforced slabs under impact loads. In: 20th International Conference on Computer Methods in Mechanics, CMM-2013. Short Papers. Poznań, Poland, 27-31 August 2013. Poznań: Poznań University of Technology. 379-380. (2013).
  • 28. Cichocki K.: Numerical Analysis of Concrete Structures under Blast Load. Koszalin University of Technology, 2008.
  • 29. Collins F., Sanjayan J.G.: (1999) Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cement and Concrete Research. Vol. 29 (4), 607–610 (1999).
  • 30. Comi C., Perego U.: Fracture energy based bi-dissipative damage model for concrete. International Journal of Solids and Structures, Vol. 38, 6427– 6454, 2001.
  • 31. Cook R.D., Malkus D.S., Plesha M.E.: Concepts and applications of finite element analysis. Third edition. John Wiley & Sons, 1989.
  • 32. Cordebois J.P., Sidoroff F.: Damage induced elastic anisotropy. In: Mechanical Behavior of Anisotropic Solids. Boehler J.P. (ed.), Martinus Nijhoff, Boston, 761-774, 1983.
  • 33. Cordebois J.P., Sidoroff F.: Endommagement anisotrope en ẻlasiticiẻ et plasticitẻ. J. Mẻc. Thẻor. Appl., Numero Spẻcial, 45-60, 1982 (in French)
  • 34. Corder G.W., Foreman D.I.: Nonparametric Statistics for Non- Statisticians: A Step-by-Step Approach. Wiley, New Jersey, USA (2009).
  • 35. Correia J.R., de Brito J., Pereira A.S.: Effects on concrete durability of using recycled ceramic aggregates. Materials and Structures. Vol. 39, 169– 177 (2006).
  • 36. Dassault Systemes SIMULIA: ABAQUS Analysis User’s Manual. Providence, 2013.
  • 37. Dassault Systemes SIMULIA: ABAQUS Scripting Reference Guide. Providence, 2013.
  • 38. Davison L., Stevens A.L.: Thermodynamical constitution of spalling elastic bodies. J. Appl. Phys., Vol. 44, 668-674, 1993.
  • 39. de Brito J., Pereira A.S., Correia J.R.: Mechanical behaviour of nonstructural concrete made with recycled ceramic aggregates. Cement and Concrete Composites. Vol. 27 (4), 429–433 (2005).
  • 40. Desmyster J., Vyncke J.: Proceedings of the 1st ETNRecy, net/RILEM Workshop, on use of Recycled Materials as Aggregates in Construction Industry (posters). Paris, ETNRecy, net, 2000.
  • 41. di Prisco M., Mazars J.: Crush-crack: a non-local model for concrete. Mechanics of Cohesive-Frictional Materials, Vol. 1, 321–347, 1996.
  • 42. Domski J., Katzer J., Fajto D.: Load-CMOD Characteristics of Fibre Reinforced Cementitious Composites Based on Waste Ceramic Aggregate. Annual Set - The Environment Protection, Vol. 14, 69-80 (2012).
  • 43. Domski J., Katzer J., Fajto D.: Load-CMOD Characteristics of FibreReinforced Cementitious Composites Based on Waste Ceramic Aggregate, Rocznik Ochrona Środowiska (Annual Set - The Environment Protection), Vol. 14, Year 2012, 69-80.
  • 44. Domski J., Katzer J.: Load-deflection Characteristic of Fibre Concrete Based on Waste Ceramic Aggregate. Annual Set - The Environment Protection, Vol. 15, 69-80 (2013).
  • 45. Domski J.: Cracking moment in steel fibre reinforced concrete beams based on waste sand. “OVIDIUS” University Annals – Constantza, Series Civil Engineering, Year XIII (2011), Issue 13, 29-34 (2011).
  • 46. Dragon A.: Plasticity and ductile fracture damage: study of void growth in metals. Engineering Fracture Mechanics, Vol. 21, 875–885, 1985.
  • 47. Dunne F.P.E., Hayhurst D.R.: Continuum damage based constitutive equation for copper under high temperature creep and cyclic plasticity. Proc. R. Soc. Lond., A 437, 545-566, 1992.
  • 48. Dunne F.P.E., Hayhurst D.R.: Efficient cycle jumping techniques for the modelling of materials and structures under cyclic mechanical and thermal loadings. Eur. J. Mech. A/Solids, Vol. 13, 639-660, 1994.
  • 49. Dunne F.P.E., Hayhurst D.R.: Modelling of combined high-temperature creep and cyclic plasticity in components using Continuum Damage Mechanics. Proc. R. Soc. Lond., A 437, 567-589, 1992.
  • 50. Dunne F.P.E., Hayhurst D.R.: Physically based temperature dependence of elastic-viscoplastic constitutive equations for copper between 20 and 500oC. Phil. Mag., A 74, 359-382, 1995.
  • 51. Dunne F.P.E., Othman A.M., Hall F.R., Hayhurst D.R.: Representation of uniaxial creep curves using continuum damage mechanics. Int. J. Mech. Sci., Vol. 32, 945-957, 1990.
  • 52. Eadie W.T.: Statistical methods in experimental physics. North-Holland, USA 1988.
  • 53. EN 12390-3 Testing hardened concrete – Part 3 Compressive strength of test specimen.
  • 54. EN 12390-6 Testing hardened concrete – Part 6 Tensile splitting strength of test specimens.
  • 55. EN 12390-7 Testing hardened concrete – Part 7 Density of hardened concrete.
  • 56. EN 14651 Test method for metallic fibered concrete – Measuring the flexural tensile strength (limit of proportionality (LOP), residual)
  • 57. Etse G., Willam K.: Fracture energy formulation for inelastic behavior of plain concrete. Journal ofEngineering Mechanics, ASCE 120, 1983–2011, 1994.
  • 58. Faria R., Oliver J., Cervera M.: A strain-based plastic viscous-damage model for massive concrete structures. International Journal of Solids Structures, Vol. 14, 1533–1558, 1998.
  • 59. Feenstra P.H., de Borst R.: A composite plasticity model for concrete. International Journal of Solids and Structures, Vol. 33, 707–730, 1996.
  • 60. Gawenda T.: Wpływ rozdrabniania surowców skalnych w różnych kruszarkach i stadiach kruszenia na jakość kruszyw mineralnych, Gospodarka Surowcami Mineralnymi, vol. 29 (1), year 2013, 53-65. DOI 10.2478/gospo-2013-0002
  • 61. Głodkowska W., Ruchwa M.: Static analysis of reinforced concrete beams strengthened with CFRP composites. Archives of Civil Engineering, Vol. LVI(2), 111-122 (2010).
  • 62. Graeff A.G., Pilakoutas K., Neocleous K., Peres M.V.N.: Fatigue Resistance and Cracking Mechanism of Concrete Pavements Reinforced with Recycled Steel Fibres Recovered from Post-Consumer Tyres. Engineering Structures, Vol. 45, 385-395 (2012).
  • 63. Grzybowski M., Meyer C.: Damage Accumulation in Concrete with and Without Fiber Reinforcement. ACI Materials Journal, Vol 11-12, 1993.
  • 64. Grzybowski M., Meyer C.: Damage Prediction for Concrete with and without Fiber Reinforcement. Dept. of Civil Engineering and Engineering Mechanics, Columbia University, New York, 1992.
  • 65. Halm D., Dragon A.: A model of anisotropic damage mesocrack growth: unilateral effect. International Journal of Damage Mechanics, Vol. 5, 384–402, 1996.
  • 66. Hansen E., Willam K., Carol I.: A two-surface anisotropic damage/ plasticity model for plain concrete. In: Proceeding of Framcos-4 Conference, Paris, 2001.
  • 67. Hatzigeorgioiu G.: A simple concrete damage model for dynamic FEM applications. International Journal of Computational Engineering Science, Vol. 2, 267–286, 2001.
  • 68. Hayakawa K., Murakami S.: Space of damage conjugate force and damage potential of elastic-plastic-damage materials. in: Damage Mechanics in Engineering Materials, Voyiadjis G.Z., Ju J.W., Chaboche J.L., (eds.), Elsevier, Amsterdam, 27-44, 1998.
  • 69. Hayhurst D.R., Dimmer P.R., Morrison C.J.: Development of continuum damage in the creep rupture of notched bars. Phil. Trans. R. Soc. Lond., A 311, 103-129, 1984.
  • 70. Hayhurst D.R., Leckie F.A.: The effect of creep constitutive and damage relationship upon rupture time of solid circular torsion bar. J. Mech. Phys. Solids, Vol. 21, 431-446, 1973.
  • 71. Hayhurst D.R.: Creep rupture under multiaxial state of stress. J. Mech. Phys. Solids, Vol. 20, 381-390, 1972.
  • 72. Hendriks C.F., Janssen G.M.T.: Use of recycled materials in construction. Materials and Structures. Vol. 36, 604–608 (2003).
  • 73. ISO 6784 Concrete – Determination of static modulus of elasticity in compression.
  • 74. JCI-SF 6 Method of Test for Shear Strength of Fibre Reinforced Concrete.
  • 75. Johnston C.D.: Fibre reinforced cements and concretes. Gordon and Breach Science Publishers, Amsterdam 2001.
  • 76. Jones N., Alves M., Yu J.L.: On the Elastic Modulus Degradation in Continuum Damage Mechanics. Comp. & Struct., Vol. 76, 703-712, 2000.
  • 77. Ju J.W.: Isotropic and anisotropic damage variables in continuum damage mechanics. J. of Eng. Mech., ASCE, Vol. 116, 2764-2770, 1990.
  • 78. Ju J.W.: On energy-based coupled elastoplastic damage models at finite strains. J. of Eng. Mech., ASCE, Vol. 115, 2507-2525, 1989.
  • 79. Ju J.W.: On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. Int. J. Solids & Struct., Vol. 25, 803-833, 1989.
  • 80. Kachanov L.M.: Foundations of Fracture Mechanics. Moscow, Nauka, 1974
  • 81. Kachanov L.M.: Introduction to Continuum Damage Mechanics. Netherlands, Martinus Nijhoff, 1986
  • 82. Kachanov L.M.: Time of the rupture process under creep conditions. Izv. AN SSSR, Otd. Tekh., Nauk., Vol. 8, 26-31, 1958.
  • 83. Katzer J., Domski J.: Optimization of fibre reinforcement for waste aggregate cement composite. Construction and Building Materials. Vol. 38,790–795 (2013).
  • 84. Katzer J., Domski J.: Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Construction and Building Materials, Vol. 34, 243–248 (2012).
  • 85. Katzer J., Kobaka J.: Combined Non-Destructive Testing Approach to Waste Fine Aggregate Cement Composites. Science and Engineering of Composite Materials, Vol. 16(4), 277-284 (2009).
  • 86. Katzer J., Kobaka J.: The assessment of fine aggregate pit deposits for concrete production. Kuwait Journal of Science and Engineering. Vol. 33, 165-174 (2006).
  • 87. Katzer J., Kobaka J.: Ultrasonic pulse velocity test of SFRC. Proceedings, The 2nd Central European Congress on Concrete Engineering “Concrete Structures for Traffic Network”, 21-22 September 2006, Hradec Kralove, Czech Republic, 389-392 (2006).
  • 88. Katzer J., Kobaka, J.: Harnessing Waste Fine Aggregate for Sustainable Production of Concrete Precast Elements. Annual Set - The Environment Protection. Vol. 12, 33-45 (2010).
  • 89. Katzer J.: Median diameter as a grading characteristic for fine aggregate cement composite designing. Construction and Building Materials, Vol. 35, 884–887 (2012).
  • 90. Katzer J.: Properties of Precast SFRCC Beams Under Harmonic Load. Science and Engineering of Composite Materials. Vol.15, No.2, 107-120 (2008).
  • 91. Katzer J.: Steel fibers and steel fiber reinforced concrete in civil engineering. Pacific Journal of Science and Technology. Vol.7, No.1, 53-58 (2006).
  • 92. Katzer J.: Strength performance comparison of mortars made with waste fine aggregate and ceramic fume. Construction and Building Materials, Vol. 47, 1-6 (2013).
  • 93. Kim D.J. et al.: Loading Rate Effect on Pullout Behavior of Deformed Steel Fibrers. ACI Materials Journal, Vol. 106, 576-584 (2008).
  • 94. Kohno K., et al.: Effects of artificial lightweight aggregate on autogenous shrinkage of concrete. Cement and Concrete Research. Vol. 29 (2), 611– 614 (1999).
  • 95. Kovler K., Jensen O.M.: Novel techniques for concrete curing. Concrete International. Vol. 27 (9), 39–42 (2005).
  • 96. Krajcinovic D.: Contiuum Damage Mechanics; When and How? Int. J. Damage Mech., Vol. 4, 217-229, 1995.
  • 97. Krajcinovic D.: Damage Mechanics. Elsevier, Amsterdam, 1996.
  • 98. Kupfer H., Hilsdorf H.K., Rusch H.: Behaviour of concrete under biaxial stress. Proc. ACI, Vol. 66, 656–666, 1969.
  • 99. Leckie F.A., Onat E.T.: Tensorial nature of damage measuring internal variables, in: Physical Non-Linearities in Structural Analysis. Hult J., Lemaitre J., (eds.), Springer-Verlag, 1981.
  • 100. Lee J., Fenves G.L.: Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics Division, Vol. 124, 892–900, 1998.
  • 101. Lemaitre J., Chaboche J.L.: Aspect phenomenologique de la rupture par endommagement. J. Mec. Appl., Vol. 2, 317-365, 1978.
  • 102. Lemaitre J.: A continuum damage mechanics model for ductile fracture. Journal of Engineering Materials Technology, Vol. 107, 83–89, 1985.
  • 103. Lemaitre J.: Evaluation of dissipation and damage in metals submitted to dynamic loading. Proceedings of I.C.M., Kyoto, Japan, Vol. 1, 1971
  • 104. Litewka A.: Analytical and experimental study of fracture od damaging solids. In: Yielding, Damage and Failure of Anisotropic Solids. Boechler J.P. (ed.), Mech. Eng. Publ., London, 655-665, 1987.
  • 105. Litewka A.: Creep rupture of metals under multi-axial state of stress. Arch. Mech. Vol. 41, 3-23, 1989.
  • 106. Litewka A.: Effective material constants for orthotropically damaged elastic solid. Arch. Mech., Vol. 37, 631-642, 1985.
  • 107. Litewka A.: On stiffness and strength reduction of solids due to crack development. Eng. Fract. Mech., Vol. 25, 637-643, 1986.
  • 108. Lubarda V.A., Krajcinovic D., Mastilovic S.: Damage model for brittle elastic solids with unequal tensile and compressive strength. Engineering Fracture Mechanics, Vol. 49, 681–697, 1994.
  • 109. Maidl B.R.: Steel fibre reinforced concrete. Ernst & Sohn. Berlin 1995.
  • 110. Malhorta V.M., Mehta P.K.: High-Performance High-Volume Fly Ash Concrete. SCMSD Inc., second revised edition. Ottawa 2005.
  • 111. Mazars J., Pijaudier-Cabot G.: Continuum damage theory: application to concrete. Journal of Engineering Mechanics, Vol. 115, 345–365, 1989.
  • 112. Mazars J.: A model of unilateral elastic damageable material and its application to concrete. In: Proceedings of the RILEM International Conference on Fracture Mechanics of Concrete, Lausanne, Switzerland, Elsevier,New York, 1985.
  • 113. McDowell D.L.: Applications of Continuum Damage Mechanics to Fatigue and Fracture. American Society for Testing & Materials; 1997.
  • 114. Mehta P.K., Monteiro P.J.M.: Concrete Microstructure, Properties and Materials. Third edition, McGraw-Hill, New York, USA, 2006
  • 115. Meyer C. (ed.): Modeling and Analysis of Reinforced Concrete Structures for Dynamic Loading. CISM Courses and Lectures No. 346, Springer, Wien-NewYork, 1998.
  • 116. Meyer C., Peng X.: A Comprehensive Description for Damage of Concrete Subjected to Complex Loading. Structural Engineering and Mechanics, Vol 5, 679-689, 1997.
  • 117. Müller A.: Lightweight aggregate produced from fine fraction of construction and demolition waste. Design for Deconstruction and Materials Reuse. Proceedings of the CIB Task Group 39 – Deconstruction Meeting. Karlsruhe 2002.
  • 118. Murakami S., Hayakawa K., Liu Y.: Damage evolution and damage surface of elastic-plastic-damage materials under multiaxial loading. Int. J. Damage Mech., Vol. 7, 103-128, 1998.
  • 119. Murakami S., Kamiya K.: Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int. J. Solids Structures, Vol. 39, 473-486, 1997.
  • 120. Murakami S., Mizuno M., Okamoto T.: Mechanical modelling of creep swelling and damage under irradiation of policrystalline metals. Nucl. Engng., Design, Vol. 131, 147-155, 1991.
  • 121. Murakami S., Mizuno M.: A constitutive equation of creep, swelling and damage under neutron irradiation applicable to multiaxial and variable states of stress. Int. J. Solids Structures, Vol. 29, 2319-2328, 1992
  • 122. Murakami S., Ohno N.: A continuum theory of creep and creep damage. In: Creep in Structures. Ponter A.R.S., Hayhurst D.R. (eds.), Springer-Verlag, 422-444, 1981.
  • 123. Murakami S.: Mechanical modelling of material damage. J. Appl. Mech., Vol. 55, 280-286, 1988.
  • 124. Murakami S.: Notion of continuum damage mechanics and its application to anisotropic creep damage theory. J. Eng. Mater. Technol., Vol. 105, 99- 105, 1983.
  • 125. Murakami S.: Progress in continuum damage mechanics. Int. J. JSME., Vol. 30, 701-710, 1987.
  • 126. Naaman A.E.: Engineered Steel Fibres with Optimal Properties for Reinforcement of Cement Composites. Journal of Advanced Concrete Technology, Vol.1 (3), 241-252 (2003).
  • 127. Neville A.M.: Properties of Concrete. Longman, 4th Edition, Addison Wesley Longman, Harlow, Essex 1995.
  • 128. Neville A.M.: Properties of Concrete. Longman, 4th Edition, Addison Wesley Longman, Harlow, Essex 1995.
  • 129. Neville A.M.: Properties of Concrete. Longman, 4th Edition, Addison Wesley Longman, Harlow, Essex 1995.
  • 130. Ohtani Y., Chen W.F.: Multiple hardening plasticity for concrete materials. Journal of Engineering Mechanics, ASCE 114, 1890–1910, 1988.
  • 131. Ortiz M.: A constitutive theory for inelastic behaviour of concrete. Mechanics of Materials, Vol. 4, 67–93, 1985.
  • 132. Pająk M., Ponikiewski T.: Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Construction and Building Materials, Vol. 47, 397-408 (2013).
  • 133. Pająk M., Ponikiewski T.: Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Construction and Building Materials, Vol. 47, 397-408 (2013).
  • 134. Paskova T., Meyer C.: Damage Mechanics Based Model for Cyclic Response of Concrete, In: Fracture and Damage in Quasibrittle Structures. Bazant Z.P. et al. (eds.), E & FN Spon, London, 1994.
  • 135. Peng X., Meyer C. Fang L.: Thermomechanically Consistent Continuum Damage Model for Concrete Materials. Engineering Mechanics Journal, ASCE, 1997.
  • 136. Ponikiewski T., Gołaszewski J.: Composition of steel fibre reinforced selfcompacting concrete for optimal rheological and mechanical properties. Conference: 7th International RILEM Conference on Self-Compacting Concrete. The 1st International RILEM Conference on Rheology and Processing of Construction Materials, 1-11, (2013).
  • 137. Ponikiewski T., Gołaszewski J.: The Rheological and Mechanical Properties of High-performance Self-compacting Concrete with High-calcium Fly Ash. Procedia Engineering, Vol. 65, 33-38 (2013).
  • 138. Ponikiewski T., Katzer J., Bugdol M., Rudzki M.: Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Materials and Structures, Vol. 10, 1-12 (2014).
  • 139. Ponikiewski T., Katzer J.: Mechanical characteristics of green SCC modified by steel and polymer fibres. Annual Set - The Environment Protection, Vol. 16, (2014).
  • 140. Rabotnov Y.N.: Creep Problems in Structural Members. Nort-Holland, Amsterdam, 1969.
  • 141. Rabotnov Y.N.: Creep rupture. Proc. of 12 Int. Congr. Appl. Mech., 342-349, 1968.
  • 142. Rabotnov Y.N.: Damage from creep. Zhurn. Prokl., Mekh. Tekhn. Phys., Vol. 2, 113-123, 1963.
  • 143. Resende L.: A damage mechanics constitutive theory for the inelastic behavior of concrete. Computer Methods in Applied Mechanics and Engineering, Vol. 60, 57–93, 1987.
  • 144. Rucevskis S., Wesolowski M.: Identification of damage in a beam structure by using mode shape curvature squares. Shock and Vibration, Vol. 17(4-5), 601-610 (2010).
  • 145. Ruchwa M.: Ocena odporności konstrukcji żelbetowej na działanie wybuchu. Biuletyn Wojskowej Akademii Technicznej, Vol. LIX(4), 269-280 (2010).
  • 146. Ruchwa M.: Wykorzystanie spienionych metali do ochrony konstrukcji przed obciążeniami udarowymi. Materiały Budowlane, Vol. 11, 38-40 (2013).
  • 147. Seitl S., Bílek V., Kersner Z., Veselý J.: Cement based composites for thin building elements: Fracture and fatigue parameters. Procedia Engineering, Vol. 2, 911-916 (2010).
  • 148. Sidoroff. F.: Description of anisotropic damage application to elasticity. In: Physical Non-Linearities in Structural Analysis. Hult J., Lemaitre J. (eds.), Springer, Berlin, 237-244, 1981.
  • 149. Simo J.C., Ju J.W., Pister K.S., Taylor R.L.: On strain-based continuum damage models: Formulation and computational aspects. Proceedings of the Second International Conference and Short Course on Constitutive Laws for Engineering Materials: Theory and Application, Univ. of Arizona, USA, 233-246, 1987.
  • 150. Simo J.C., Ju J.W.: On continuum damage-elastoplasticity at finite strains: A computational framework. Computational Mechanics, Vol. 5, 375-400, 1989.
  • 151. Simo J.C., Ju J.W.: Strain- and stress-based continuum damage models; I– Formulation, II – Computational aspects. Int. J. Solids Structures, Vol.23, 821-869, 1987.
  • 152. Skrzypek J., Ganczarski A.: Application of the orthotropic damage growth rule to variable principal directions. Int. J. Damage Mech., Vol. 7,180-206, 1998.
  • 153. Skrzypek J., Ganczarski A.: Modeling of Material Damage and Failure of Structures. Springer Verlag, Berlin-Heidelberg, 1999.
  • 154. Skrzypek J., Kuna-Ciskał H., Ganczarski A.: Continuum damage mechanics modelling of creep-damage and elastic-damage-fracture in materials and structures. In Modeling of Damage and Fracture Processes in Engineering Materials, Trends in Mechanics of Materials, IPPT, Warsaw, 1999.
  • 155. Smadi M.M., Belakhdar K.A.: Nonlinear Finite Element Analysis of High Strength Concrete Slabs. Computers and Concrete, An International Journal, Vol. 4(3), 187-206 (2007).
  • 156. Souza Neto E.A. de, Perić D., Owen D.R.J.: Computational methods for plasticity. Theory and applications. John Wiley & Sons 2008.
  • 157. Suzuki M., Meddah M.S., Sato R.: Use of porous ceramic waste aggregates for internal curing of high-performance concrete. Cement and Concrete Research. Vol. 39, 373–381 (2009).
  • 158. Tao X., Philips D.V.: A simplified isotropic damage model for concrete under biaxial stress states. Cement & Concrete Composites, Vol. 27, 716–726, 2005.
  • 159. Taqieddin Z.N., Voyiadjis G.Z., Almasri A.H.: Formulation and Verification of a Concrete Model with Strong Coupling between Isotropic Damage and Elastoplasticity and Comparison to a Weak Coupling Model. Journal of Engineering Mechanics Vol. 138(5), 530-541, 2012.
  • 160. Tlemat H., Pilakoutas K., Neocleous K.: Stress-Strain Characteristics of SFRC Using Recycled Fibres. Materials and Structures, Vol. 39, 333-345 (2006).
  • 161. Vakulenko A.A., Kachanov M.: Continuum theory of medium with cracks. Izv. AN SSSR, M.T.T., Vol. 4, 159-166, 1971.
  • 162. Vecchio F.J., Collins M.P.: The modified compression-field theory for reinforced concrete elements subjected to shear. ACI Structure Journal, Vol 2, 219–231, 1986.
  • 163. Voyiadijs G.Z., Park T.: Anisotropic damage for the characterization of the onset of macro-crack initiation in metals. Int. J. Damage Mech., Vol. 5, 68-92, 1996.
  • 164. Weber S., Reinhardt H.W.: A new generation of high performance concrete: concrete with autogenous curing. Advanced Cement Based Material. Vol. 6 (2), 59–68 (1997).
  • 165. Wesolowski M., Barkanov E.: Model errors influence on identified composite material properties. Composite Structures, Vol. 94, 2716-2723 (2012).
  • 166. Woo C.W., Li D.L.: A universal physically consistent definition of material damage. Int. J. Solids Structures, Vol. 20, 2097-2108, 1993.
  • 167. Wu J.Y., Li J., Faria R.: An energy release rate-based plastic-damage model for concrete. International Journal of Solids and Structures, Vol. 43, 583–612, 2006.
  • 168. Yazdani, S., Schreyer, H.L.: Combined plasticity and damage mechanics model for plain concrete. Journal of Engineering Mechanics, Vol. 116 , 1435–1450, 1990.
  • 169. Zhang Y., Hao H, Lu Y.: Anisotropic dynamic damage and fragmentation of rock materials under explosive loading. International Journal of Engineering Science, Vol. 41, 917–929, 2003.
  • 170. Zhutovsky S., Kovler K., Bentur A.: Influence of cement paste matrix properties on the autogenous curing of high-performance concrete. Cement & Concrete Composites. Vol. 26 (5), 499–507 (2004).
  • 171. Zhutovsky S., Kovler K., Bentur A.: Influence of wet lightweight aggregate on mechanical properties of concrete at early ages. Materials Structure. Vol. 35, 97–101 (2002).
  • 172. Zych T., Krasodomski W.: Study on the properties of cement mortars with basalt fibres. Conference: Brittle Matrix Composites 10, BMC 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57ef884c-3b61-4b5e-a4d6-8df469632b06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.