PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Niestateczność ruchu cieczy lepkiej w pofalowanym kanale

Autorzy
Identyfikatory
Warianty tytułu
EN
Instability of a viscous liquid flow in a corrugated channel
Języki publikacji
PL
Abstrakty
PL
Praca dotyczy zagadnień związanych z badaniem niestateczności laminarnego ruchu cieczy lepkiej przez kanał z pofalowanymi ścianami. Celem rozważań jest wykazanie, że pofalowanie poprzeczne (tj. zorientowane prostopadle do kierunku przepływu) o odpowiednio dobranej geometrii prowadzi do radykalnego obniżenia krytycznej liczby Reynoldsa przepływu, przy jednoczesnym zachowaniu oporów hydraulicznych na poziomie podobnym jak w przepływie Poiseuille’a a przez kanał o ścianach płaskich. Wprowadzenie pofalowania poprzecznego wydaje się zatem znacznie lepszym sposobem destabilizacji wewnętrznych przepływów laminarnych przy niskich liczbach Reynoldsa niż stosowane powszechnie pofalowanie wzdłużne. Przepływ bazowy w kanale z poprzecznym pofalowaniem jest wyznaczany przy użyciu semianalitycznej metody zanurzonych granic, co pozwala uniknąć transformacji obszaru. Równania różniczkowe, opisujące ewolucję małych zaburzeń w przepływie, wprowadzono w pełnej ogólności i skonstruowano ich spektralnie zbieżną dyskretyzację. Analizę dynamiki zaburzeń przeprowadzono w dwóch etapach. w pierwszym z nich wyznaczono numerycznie tzw. mody normalne, przeprowadzono obliczenia parametrycznej zmienności modu niestatecznego oraz wyznaczono struktury kinetyczne pola zaburzeń prędkości. W drugiej części analizy zbadano numerycznie wpływ poprzecznego pofalowania na przebieg zjawiska przejściowego wzmocnienia zaburzeń w zakresie podkrytycznych liczb Reynoldsa. pokazano, że poprzeczne pofalowanie ścian nie tylko istotnie modyfikuje wielkość tego wzmocnienia, ale również wprowadza nowy mechanizm wzrostu zaburzeń związany z poprzeczną modelującą profilu prędkości przepływu bazowego. Wykazana w pracy możliwość destabilizacji przepływów wewnętrznych przy niskich liczbach Reynoldsa może być podstawą opracowania nowych metod zwiększania efektywności mieszania i procesów transportu w różnych urządzeniach stosowanych w technice cieplnej, biotechnologii i medycynie.
EN
This work focuses on the problem of the instability of laminar viscous flow in a wavy-walled channel. The aim of the analysis is to show that transversal (i.e., perpendicular in terms of its flow direction) wall waviness can lead to a radical reduction in the critical Reynolds number of the flow, while the hydraulic resistance remains nearly the same as for the Poiseuille flow in the channel with flat walls. Thus, introducing the transversal waviness of the channel walls seems to be a much better way of destabilizing internal laminar flows than the widely used longitudinal waviness. The basic low in the transversely wavy channel is determined by the semi-analytical method of immersed boundaries which allows for the avoidance of any domain transformation. Differential equations describing the evolution of small distubances in the flow have been produced in full generality and their spectrally accurate discretization has been constructed. The analysis of the disturbances dynamics consists of two parts. In the first part, the normal modes have been obtaind numerically, the parametric study of the unstable mode has been performed, and the kinematic structures of the disturbance velocity field have also been described. In the second part, the influence of the transversall wall waviness on the transient amplification of disturbances in the range of subcritical Reynolds numbers has been investigated numerically. It has been show that the wall waviness significantly modifies the amplification magnitude and it also introduces a new mechanism of disturbance growth related to the trasversal modulation of the velocity profile of the basic flow. The possibility of the low-Reynolds-number destabilization of the internal flow could be used as the basis for design of innovative methods of mixing and transport enhancement in various devices in heat technology, biotechnology and medicine.
Rocznik
Tom
Strony
3--171
Opis fizyczny
Bibliogr. 121 poz., rys., tab., wykr.
Twórcy
  • Wydział Mechaniczny Energetyki i Lotnictwa
Bibliografia
  • [1] Alfredsson P.H., Matsubara M.: Streaky structures in transition. W pracy zbiorowej Transitional Boundary Layers in Aeronautics. Ed. R. Henkes, J. van Ingen., Elsevier Science Publishers, 1996.
  • [2] Amon C., Guzman A.M., Morel B.: Lagrangian chaos, Eulerian chaos, and mixing enhancement in converging-diverging channel flows. Physics of Fluids, 8 (5), pp. 1192-1206, 1996.
  • [3] Andersson P., Berggren M., Henningson D.S.: Optimal disturbances and bypass transition in boundary layers. Physics of Fluids, 11 (1), pp. 134-150, 1999.
  • [4] Andersson P., Brandt L., Bottaro A., Henningson D.S.: On the breakdown of boundary layer streaks. J. Fluid Mech., vol. 428, pp. 29-60, 2001.
  • [5] Arnold W.I.: Równania różniczkowe zwyczajne. PWN, Warszawa 1975.
  • [6] Bahaidarah H.M.S., Anand N.K., Chen H.C.: Numerical Study of Heat and Momentum Transfer In Channels with Wavy Walls. Numerical Heat Transfer, Part A, 47, pp. 417-439, 2005.
  • [7] Bellhouse B.J., Bellhouse F.H., Curl C.M., MacMillan T.I., Gunning A.J., Spratt E.H., MacMurray S.B., Nelems J.M.: A high efficiency membrane oxygenator and pulsatile pumping system and its application to animal trials. Trans. A. Soc. Artif. Internal Organs 19, pp. 72-79, 1973.
  • [8] Benney D.J., Gustavsson L.H.: A New Mechanism for Linear and Nonlinear Hydrodynamic Instability. Studies of Appl. Math., 64, pp. 185-209, 1981.
  • [9] Bergström L.B.: Nonmodal growth of three‑dimensional disturbances on plane Couette‑Poiseuille flows. Physics of Fluids 17, 014105 (wersja elektroniczna), pp. 1-10, 2005.
  • [10] Bergström L.B.: Optimal growth of small perturbations in pipe Poiseuille flow. Physics of Fluids A 5 (11), pp. 2710-2720, 1993.
  • [11] Blancher S., Creff R., Le Quere P.: Effect of Tollmien‑Schlichting wave on convective heat transfer in a wavy channel. Part I: Linear Analysis. International Journal of Heat and Fluid Flow, 19, pp. 39-48, 1998.
  • [12] Boiko A.V., Grek G.R., Dovgal A.V., Kozlov V.V.: The Origin of Turbulence in Near­Wall Flows. Springer, 2002.
  • [13] Bourne D.: Hydrodynamic Stability, the Chebyshev Tau Methods and Spurious Eigenvalues. Continuum Mechanics and Thermodynamics, vol. 15, No 6, pp. 571-579, 2003.
  • [14] Boyd J.P.: Chebyshev and Fourier Spectral Methods, 2nd Ed. Dover Publication Inc., Mineola NY 2001.
  • [15] Breuer K.S., Kuraishi T.: Transient growth in two‑ and three‑dimensional boundary layers. Physics of Fluids 6 (6), pp. 1983-1993, 1994.
  • [16] Butler K.M., Farrel B.F: Three‑dimensional optimal perturbations in viscous shear flow. Physics of Fluids A 4 (8), pp. 1637-1650, 1992.
  • [17] Cabal A., Szumbarski J., Floryan J.M.: Numerical Simulation of Flows over Corrugated Walls. Computers and Fluids, 30 (6), pp. 753-776, 2001.
  • [18] Cabal A., Szumbarski J., Floryan J.M.: Stability of flow in a wavy channel. Journal of Fluid Mechanics, vol. 457, pp. 191-212, 2002.
  • [19] Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral Methods in Fluid Dynamics. Springer, New York 1988.
  • [20] Chapman J.: Subcritical transition in channel flows. J. Fluid Mech., vol. 451, pp. 35-97, 2002.
  • [21] Cho K.J., Kim M., Shin H.D.: Linear stability of two‑dimensional steady flow in wavy walled channel. Fluid Dynamic Research, 23, pp. 349-370, 1998.
  • [22] Corbett P., Bottaro A.: Optimal linear growth in swept boundary layers. J. Fluid Mech., vol. 435, pp. 1-23, 2001.
  • [23] Corbett P., Bottaro A.: Optimal perturbations for boundary layers subject to streamwise pressure gradient. Physics of Fluids 12 (1), pp. 120-130, 2000.
  • [24] Criminale W.O., Jackson T.J., Joslin R.D.: Theory and Computation in Hydrodynamic Stability. Cambridge University Press, 2003.
  • [25] Criminale W.O., Jackson T.L., Lasseigne D.G., Joslin R.D.: Perturbation dynamics in viscous channel flows. J. Fluid Mech., vol. 339, pp. 55-75, 1997.
  • [26] Dawkins P.T., Dunbar S.R., Douglass R.W.: The origin and nature of spurious eigenvalues in the spectral tau method. Journal of Computational Physics, 147, pp. 441-462, 1998.
  • [27] Di Prima R.C., Habetler G.J.: A completeness theorem for non‑selfadjoint eigenvalue problems in hydrodynamic stability. Arch. Rat. Mech. Anal. 32, pp. 218-227, 1969.
  • [28] Drazin P.G.: Introduction to Hydrodynamic Stability. Cambridge University Press, 2002.
  • [29] Ehrenstein U., Koch W.: Three‑dimensional wavelike equilibrium states in plane Poiseuille flow. J. Fluid Mech., 228, pp. 111-148, 1991.
  • [30] Ehrenstein U.: On the linear stability of channel flow over riblets. Physics of Fluids 8 (11), pp. 3194-3196, 1996.
  • [31] Elofsson P.A., Alfredsson P.H.: An experimental study of oblique transition in plane Poiseuille flow. J. Fluid Mech., vol. 358, pp. 177-202, 1998.
  • [32] Elofsson P.A., Kawakami M., Alfredsson P.H.: Experiments on the stability of streamwise streaks in plane Poiseuille flow. Physics of Fluids 11 (4), pp. 915-930, 1999.
  • [33] Farrell B.F., Ioannou P.J.: Generalized Stability Theory. Autonomous and nonautonomous operators. J. Atmospheric. Sci., vol. 53, No 14, pp. 2025-2053, 1996.
  • [34] Fjortoft R.: Application of integral theorems in deriving criteria for instability for laminar flows and for the baroclinic circular vortex. Geofys. Publ., Oslo, 17 (6), pp. 1-52, 1950.
  • [35] Floryan J.M., Asai M.: Stability of Flow in a Rough Channel. XXI Inter. Congr. Theor. Appl. Mech., Warszawa, 15-21 sierpnia, 2004, Springer, Dodrecht 2005.
  • [36] Floryan J.M., Dallman U.: Flow over a leading edge with distributed roughness. Journal of Fluid Mechanics, 216, pp.629-656, 1990.
  • [37] Floryan J.M., Szumbarski J., Wu X.: Stability of flow in a channel with vibrating walls. Physics of Fluids 14 (11), pp. 3927-3936, 2002.
  • [38] Floryan J.M., Yamamoto K., Murase T.: Laminar‑turbulent transition process in the presence of simulated wall roughness. Can. Aeronaut. & Space J., 38, pp. 173-182, 1992.
  • [39] Floryan J.M.: Centrifugal instability of Couette flow over a wavy wall. Physics of Fluids, 14, pp. 312-322, 2002.
  • [40] Floryan J.M.: Stability of wall‑bounded shear layers in the presence of simulated distributed surface roughness. J. Fluid Mech., vol. 335, pp. 29-55, 1997.
  • [41] Floryan J.M.: Two‑dimensional instability of flow in a rough channel. Physics of Fluids 17, 044101‑1 (wersja elektroniczna), 2005.
  • [42] Floryan J.M.: Vortex instability in a diverging‑converging channel. J. Fluid. Mech., vol. 482, pp. 17-50, 2003.
  • [43] Fornberg B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, 1996.
  • [44] Fransson J.H.M., Brandt L., Talamelli A., Cossu C.: Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Physics of Fluids, vol. 16, No 10, pp. 3627-3638, 2004.
  • [45] Gardner D.R., Trogdon S.A., Douglass R.W.: A modified tau spectral method that eliminates spurious eigenvalues. Journal of Computational Physics, 80, pp. 137-167, 1989.
  • [46] Georgescu A.: Hydrodynamic stability theory. Martinus Nijhoff Publishers, Kluwer APG, 1985.
  • [47] Ghaddar N., El‑Hajj A.: Numerical Study of Heat Transfer Augmentation of Viscous Flow in Corrugated Channels. Heat Transfer Engineering, 21, pp. 35-46, 2000.
  • [48] Goldstein J.L., Sparrow E.M.: Heat‑mass transfer characteristics for flow in a corrugated wall channel. Journal of Heat Transfer, 99, pp. 187-195, 1977.
  • [49] Golub G.H., van Loan Ch.F.: Matrix Computations, 3rd Ed., The Johns Hopkins University Press, Baltimore 1996.
  • [50] Grek G.R., Kozłow V.V., Titarenko S.V.: An experimental study of the influence of riblets on transition. Journal of Fluid Mechanics, 315, pp. 31-49, 1996.
  • [51] Gustavsson L.H.: Resonant growth of three‑dimensional disturbances in plane Poiseuille flow. J. Fluid Mech., vol. 112, pp. 253-265, 1981.
  • [52] Hartman Ph.: Ordinary Differential Equations. John Wiley & Sons, New York 1964.
  • [53] Heisenberg W.: Über Stabilität und Turbulenz von Flussigkeitsströmen, Ann. Physik, Leipzig 74 (4), pp. 577-627, 1924.
  • [54] Henningson D.S., Reddy S.C.: On the role of linear mechanism in transition to turbulence. Physics of Fluids 6 (3), pp. 1396-1398, 1994.
  • [55] Henningson D.S., Schmid P.J.: Vector eigenfunction expansions for plane channel flows. Studia in Applied Mathematics, 87, pp. 15-43, 1992.
  • [56] Herbert T.: On perturbation methods in nonlinear stability theory. J. Fluid Mech., 126, pp.167-186, 1983.
  • [57] Herbert T.: Secondary instability of boundary layers. Annual Review of Fluid Mechanics 20, pp. 487-526, 1988.
  • [58]Hoepffner J., Brandt L., Henningson D.S.: Transient growth on boundary layer streaks. Journal of Fluid Mechanics, 537, pp. 91-100, 2005.
  • [59] Hristova H., Roch S., Schmid P.J., Tuckerman L.S.: Transient growth in Taylor‑Couette flow. Physics of Fluids 14 (10), pp. 3475-3484, 2002.
  • [60] Joseph D.D.: Stability of Fluid Motions. Springer Verlag, 1976.
  • [61] Kerswell R.R.: Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity, 18, pp. R17-R44, 2005.
  • [62] Landhal M.T.: A note on an algebraic instability of inviscid parallel shear flows. Journal of Fluid Mechanics, 98, pp. 243-251, 1980.
  • [63] LAPACK User's Guide 3rd Ed., SIAM, 1999.
  • [64] Lee B.S., Kang I.S., Lim H.C.: Chaotic mixing and mass transfer enhancement by pulsatile laminar flow in an axisymmetric wavy channel. International Journal of Heat and Mass Transfer, 42, pp. 2571-2581, 1999.
  • [65] Luchini P., Trombetta G.: Effects of riblets upon flow stability. Applied Scientific Research, vol. 54, No 4, pp. 313-321, 1995.
  • [66] Luchini P.: Asymptotic analysis of laminar boundary‑layer flow over finely grooved surfaces. European Journal of mechanics B Fluids, 14 (2), pp. 169-195, 1995.
  • [67] Matsubara M., Alfredson P.H.: Disturbance growth in boundary layers subjected to freestream turbulence. Journal of Fluid Mechanics, 430, pp. 149-168, 2001.
  • [68] McFadden G.B., Murray B.T., Boisvert R.F.: Elimination of spurious eigenvalues in the Chebyshev tau spectral method. Journal of Computational Physics, 91, pp. 228-239, 1990.
  • [69] Meseguer A., Trefethen L.N.: A spectral Petrov‑Galerkin formulation for the pipe flow. Part I: Linear stability and transient growth. Report no 00/18. Oxford University Computing Laboratory, 2000.
  • [70] Meseguer A.: Energy transient growth in the Taylor‑Couette problem. Physics of Fluids 14 (5), pp. 1655-1660, 2002.
  • [71] Meseguer A.: Non‑normal Effects in the Taylor‑Couette Problem. Theor. Comp. Fluid Dynamics, 16, pp. 71-77, 2002.
  • [72] Meseguer A.: Streak breakdown instability in pipe Poiseuille flow. Physics of Fluids 15 (5), pp. 1203-1213, 2003.
  • [73] Nagata M.: Three‑dimensional finite‑amplitude solutions in plane Couette flow: Bifurcation from infinity. J. Fluid Mech., 217, pp. 519-527, 1990.
  • [74] Niceno B., Nobile E.: Numerical analysis of fluid flow and heat transfer in periodic wavy channel. International Journal of Heat and Fluid Flow, 22, pp. 156-167, 2001.
  • [75] Nishimura T., Ohori Y., Kawamura Y.: Flow characteristics in a channel with symmetric wavy wall for steady flow. J. Chem. Eng. Jpn., 17, pp. 466-471, 1984.
  • [76] Nishimura T., Murakami S., Arakawa S., Kawamura Y.: Flow observations and mass transfer characteristics in symmetrical wavy‑walled channels at moderate Reynolds number for steady flow. Int. J. Heat and Mass Transfer, 33, pp. 835-844, 1990.
  • [77] Nishimura T., Arakawa S., Murakami S., Kawamura Y.: Oscillatory viscous flow in symmetric wavy‑wall channels. Chemical Engineering Science, 44, pp. 2211-2224, 1989.
  • [78] Nishimura T., Murakami S., Kawamura Y.: Mass transfer in a symmetric sinusoidal wavy­wall channel for oscillatory flow. Chemical Engineering Science, 48, pp. 1793-1800, 1993.
  • [79] Nishimura T., Kawamura Y.: Three‑dimensionality of Oscillatory Flow in a Two‑dimensional Symmetric Sinusoidal Wavy‑Walled Channel. Exp. Therm. Fluid Sci., 10, pp. 62-73, 1995.
  • [80] Nishimura T., Yoshino T., Kawamura Y.: Numerical flow analysis of pulsatile flow in a channel with symmetric wavy walls at moderate Reynolds numbers. J. Chem. Eng. Jpn., 20, pp. 479-485, 1987.
  • [81] Nishimura T., Kojima N.: Mass transfer enhancement in a sinusoidal wavy‑walled channel for pulsatile flow. International Journal of Heat and Mass Transfer, 38, pp. 1719-1731, 1995.
  • [82] Orr W.M.F.: The stability or instability of the steady motions of a perfect and of a viscous liquid. Proc. Royal Irish Acad., A 27, pp. 9-138, 1907.
  • [83] Orszag S.A.: Accurate solution of the Orr‑Sommerfeld stability equation. J. Fluid Mech., 50, pp. 689-703, 1971.
  • [84] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in Fortran, 2nd Ed., Cambridge University Press, 1992.
  • [85] Rayleigh J.W.S.: On the stability or instability of certain fluid motions. Proc. London Math. Soc., 11, pp. 57-70, 1880.
  • [86] Rayleigh J.W.S.: On the stability or instability of certain fluid motions. Part II. Scientific Papers, 3, pp. 17-23, 1887.
  • [87] Reddy S.C., Henningson D.S.: Energy growth in viscous channel flows. J. Fluid Mech., vol. 252, pp. 209-238, 1993.
  • [88] Reddy S.C., Schmid P.J., Baggett J.S., Henningson D.S.: On the stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech., vol. 365, pp. 269-303, 1998.
  • [89] Reddy S.C., Schmid P.J., Henningson D.S.: Pseudospectra of the Orr‑Sommerfeld Operator. SIAM J. Appl. Math., vol. 53, No 1, pp. 15-47, 1993.
  • [90] Rush T.A., Newell T.A., Jacobi A.M.: An experimental study of flow and heat transfer sinusoidal wavy passages. International Journal of Heat and Mass Transfer, 42, pp. 1541-1553, 1999.
  • [91] Saad Y.: Numerical methods for large eigenvalue problems. Manchester University Press, 1992.
  • [92] Savino S., Comini G., Nonino C.: Three‑Dimensional Analysis of Convection in Two­Dimensional Wavy Channels. Numerical Heat Transfer, Part A, 46, pp. 869-890, 2004.
  • [93] Schlichting H.: Berechnung der Anfachung kleiner Stoerungen bei der Plattenstroemung. ZAMM 13, pp. 171-174, 1933.
  • [94] Schmid P.J., Henningson D.S.: Optimal energy density growth in Hagen‑Poiseuille flow. J. Fluid Mech., vol. 277, pp. 197-225, 1994.
  • [95] Schmid P.J., Henningson D.S.: Stability and Transition in Shear Flows. Applied Mathematical Sciences 142, Springer New York Inc., 2001.
  • [96] Selvarajan S., Tulapurkara E.G., Vasanta Ram V.: Stability characteristics of wavy channel flows. Physics of Fluids 11 (3), pp. 579-589, 1999.
  • [97] Sobey I.J.: On flow through furrowed channels. Part 1: Calculated flow patterns. Journal of Fluid Mechanics 96, pp. 1-26, 1980.
  • [98] Sommerfeld A.: Ein Beitrag zur hydrodynamischen Erklaerung der turbulenten Fluessigkeitbewegungen. Proc. 4th International Congr. Mathematicians, Rome, pp. 116-124, 1908.
  • [99] Squire H.B.: On the stability of three‑dimensional disturbances of viscous fluid flow between parallel walls. Proc. Roy. Soc. Lond., A 142, pp. 621-628, 1933.
  • [100] Stephanoff K.D., Sobey I.J., Bellhouse B.J.: On flow through furrowed channels. Part 2: Observed flow patterns. Journal of Fluid Mechanics 96, pp. 27-32, 1980.
  • [101] Szumbarski J., Floryan J.M.: A direct spectral method for determination of flows over corrugated boundaries. Journal of Computational Physics 156, 378-402, 1999.
  • [102] Szumbarski J., Floryan J.M.: Channel Flow Instability in Presence of Weak Distributed Surface Suction. AIAA Journal, vol. 38, No 2, pp. 372-376, 2000.
  • [103] Szumbarski J., Floryan J.M.: Flow in a Channel with Vibrating Walls - A Linear Theory. Expert Systems in Fluid Dynamics Research Laboratory Report 6/2000, UWO, Canada.
  • [104] Szumbarski J., Floryan J.M.: Flow Modification Using Distributed Suction. AIAA Paper 99-1012, 37th AIAA Aerospace Sciences meeting and Exhibit, Reno, NV, 1999.
  • [105] Szumbarski J., Floryan J.M.: Forcing of Channel Flow Using Distributed Wall Suction – A Linear Theory. Expert Systems in Fluid Dynamics Research Laboratory Report 1/1999, UWO, Canada.
  • [106] Szumbarski J., Floryan J.M.: Transient Disturbance Growth in a Corrugated Channel. Journal of Fluid Mechanics 568, pp. 243-272, 2006.
  • [107] Szumbarski J.: Immersed boundary approach to stability equations for a spatially periodic viscous flow. Archives of Mechanics, 3 (54), 199-222, 2002.
  • [108] Szumbarski J.: Liniowa analiza dynamiki zaburzeń w przestrzennie okresowym przepływie w płaskim kanale. XV KKMP, Augustów, 23-26.09.2002.
  • [109] Szumbarski J.: On the origin of unstable modes in viscous channel flow subject to periodically distributed surface suction. Journal of Theoretical and Applied Mechanics, 40 (4), pp. 847-871, 2002.
  • [110] Taylor G.I.: Stability of viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. London, A 223, pp. 289-343, 1923.
  • [111] Tollmien W.: Uber die Entstehung der Turbulenz. Nachr. Ges. Wiss. Goettingen, Math.‑phys. Klasse, pp. 21-44, 1929.
  • [112] Trefethen L.N., Bau D.: Numerical Linear Algebra, SIAM Philadelphia, 1997.
  • [113] Trefethen L.N., Embree M.: Spectra and Pseudospectra, The behavior of Nonnormal Matrices and Operators. Princeton University Press, 2005.
  • [114] Trefethen L.N., Trefethen A.N., Reddy S.C., Driscoll T.A.: Hydrodynamic Stability Without Eigenvalues. Science, vol. 261, pp. 578-584, 1993.
  • [115] Trefethen L.N.: Computation of Pseudospectra. Acta Numerica, vol. 8, No 1, pp. 247-295, 1999.
  • [116] Viswanath P.R.: Aircraft viscous drag reduction using riblets. Progress in Aerospace Sciences, vol. 38, pp. 571-600, 2002.
  • [117] Wallefe F.: Homotopy of exact coherent structures. Physics of Fluids 15 (6), pp. 1517-1534, 2003.
  • [118] Wang C.‑C., Cheng C.‑K.: Forced convection in a wavy‑wall channel. International Journal of Heat and Mass Transfer, 45, pp. 2587-2595, 2002.
  • [119] Wang G., Vanka S.P.: Convective heat transfer in periodic wavy passages. International Journal of Heat and Mass Transfer, vol. 38, No 17, pp. 3219-3230, 1995.
  • [120] Wedin H., Kerswell R.R.: Exact coherent structures in pipe flow: Traveling wave solution. Journal of Fluid Mechanics, 508, pp. 333-371, 2004.
  • [121] Zebib A.: Removal of the spurious modes encountered in solving stability problems by spectral methods. Journal of Computational Physics, 70 (2), pp. 521-525, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57ea9544-37ff-4c41-b2ed-43eafeff6355
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.