PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Functional model for the synthesis of nanostructures of the given quality level

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper is to develop a functional model for the synthesis of nanostructures of the given quality level, which will allow to effectively control the process of nanopatterning on the surface of semiconductors with tunable properties. Design/methodology/approach: The paper uses the IDEF0 methodology, which focuses on the functional design of the system under study and describes all the necessary processes with an accuracy sufficient for an unambiguous modelling of the system's activity. Based on this methodology, we have developed a functional model for the synthesis of nanostructures of the given quality level and tested its effectiveness through practice. Findings: The paper introduces a functional model for the synthesis of nanostructures on the surface of the given quality level semiconductors and identifies the main factors affecting the quality of nanostructures as well as the mechanisms for controlling the formation of porous layers with tunable properties. Using the example of etching single-crystal indium phosphide electrochemically in a hydrochloric acid solution, we demonstrate that the application of the suggested model provides a means of forming nanostructures with tunable properties, assessing the quality level of the nanostructures obtained and bringing the parameters in line with the reference indicators at a qualitatively new level. Research limitations/implications: Functional modelling using the IDEF0 methodology is widely used when process control is required. In this study it has been applied to control the synthesis of nanostructures of the given quality level on the surface of semiconductors. However, these studies require continuation, namely, the establishment of correlations between the technological and resource factors of synthesis and the acquired properties of nanostructures. Practical implications: This study has a significant practical effect. Firstly, it shows that functional modelling can reduce the time required to form large batches of the given quality level nanostructures. This has made it possible to substantiate the choice of the initial semiconductor parameters and nanostructure synthesis modes in industrial production from the theoretical and empirical perspective. Secondly, the presented methodology can be applied to control the synthesis of other nanostructures with desired properties and to reduce the expenses required when resources are depleted and the cost of raw materials is high. Originality/value: This paper is the first to apply the IDEF0 methodology to control the given quality nanostructure synthesis. This paper will be of value to engineers who are engaged in the synthesis of nanostructures, to researchers and scientists as well as to students studying nanotechnology.
Rocznik
Strony
72--84
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
  • Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
Bibliografia
  • [1] V. Beloshapka, O. Melnyk, V. Soolshenko, S. Poltoratski, Nickel nanowires based on icosahedral structure, Metallofizika i Noveishie Tekhnologii 41/5 (2019) 673-682. DOI: https://doi.org/10.15407/mfint.41.05.0673
  • [2] E. Kotomin, V. Kuzovkov, A. Popov, R. Vila, Kinetics of F center annealing and colloid formation in Al2O3, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 374 (2016) 107-110. DOI: https://doi.org/10.1016/j.nimb.2015.08.055
  • [3] S. Chernov, L. Trinkler, A. Popov, Photo- and thermo-stimulated luminescence of CsI-Tl crystal after UV light irradiation at 80 K, Radiation Effects and Defects in Solids 143/4 (1998) 345-355. DOI: https://doi.org/10.1080/10420159808214037
  • [4] Y. Song, K. You, J. Zhao, D. Huan, Y. Chen, C. Xing, H. Zhang, A nano-lateral heterojunction of selenium-coated tellurium for infrared-band soliton fiber lasers, Nanoscale 12/28 (2020) 15252-15260. DOI: https://doi.org/10.1039/D0NR02548H
  • [5] Y. Suchikova, Provision of environmental safety through the use of porous semiconductors for solar energy sector, Eastern–European Journal of Enterprise Technologies 6/5(84) (2016) 26-33. DOI: https://doi.org/10.15587/1729-4061.2016.85848
  • [6] Y. Suchikova, I. Bogdanov, S. Kovachov, V. Myroshnychenko, N. Panova, Optimal ranges determination of morphological parameters of nanopatterned semiconductors quality for solar cells, Archives of Materials Science and Engineering 101/1 (2020) 15-24. DOI: https://doi.org/10.5604/01.3001.0013.9502
  • [7] A. Popov, M. Monge, R. González, Y. Chen, E. Kotomin, Dynamics of F-center annihilation in thermochemically reduced MgO single crystals, Solid State Communications 118/3 (2001) 163-167. DOI: https://doi.org/10.1016/S0038-1098(01)00062-X
  • [8] V. Kuzovkov, A. Popov, E. Kotomin, R. González, Y. Chen, Physical Kinetics of nanocavity formation based on f-center aggregation in thermochemically reduced MgO single crystals, Physical Review B - Condensed Matter and Materials Physics 64/6 (2001) 064102. DOI: https://doi.org/10.1103/PhysRevB.64.064102
  • [9] S. Vambol, I. Bogdanov, V. Vambol, Ya. Suchikova, S. Kovachov, Correlation between technological factors of synthesis of por-GaP and its acquired properties, Nanosistemi, Nanomateriali, Nanotehnologii 16/4 (2018) 657-670. DOI: https://doi.org/10.15407/nnn.16.04.657
  • [10] A. Benor, New insights into the oxidation rate and formation of porous structures on silicon, Materials Science and Engineering: B 228 (2018) 183-189. DOI: https://doi.org/10.1016/j.mseb.2017.11.015
  • [11] W. Matysiak, T. Tański, W. Smok, Electrospinning of PAN and composite PAN-GO nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 18-26. DOI: http://dx.doi.org/10.5604/01.3001.0012.9653
  • [12] S. Vambol, I. Bohdanov, V. Vambol, Y. Suchikova, Formation of filamentary structures of oxide on the surface of monocrystalline gallium arsenide, Journal of Nano- and Electronic Physics 9/6 (2017) 06016-06020. DOI: https://doi.org/10.21272/jnep.9(6).06016 [13] T. Tharsika, A.S.M.A. Haseeb, S.A. Akbar, M.F.M. Sabri, Co-synthesis of ZnO/SnO2 mixed nanowires via a single-step carbothermal reduction method, Ceramics International 40/3 (2014) 5039-5042. DOI: https://doi.org/10.1016/j.ceramint.2013.08.142
  • [14] E. Monaico, I. Tiginyanu, O. Volciuc, T. Mehrtens, A. Rosenauer, J. Gutowski, K. Nielsch, Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates, Electrochemistry Communications 47 (2014) 29-32. DOI: https://doi.org/10.1016/j.elecom.2014.07.015
  • [15] N.N. Tretyakov, Surface morphology, composition, and structure of nanofilms grown on InP in the presence of V2O5, Inorganic Materials 51/7 (2015) 655-660. DOI: https://doi.org/10.1134/S002016851507016X
  • [16] G. Korotcenkov, V. Brinzari, B.K. Cho, Thin Film SnO2 and In2O3, Ozone Sensor Design: The Film Parameters Selection, Applied Mechanics and Materials 799-800 (2015) 910-914. DOI: https://doi.org/10.4028/www.scientific.net/AMM.799- 800.910
  • [17] D. Tan, H.E. Lim, F. Wang, N.B. Mohamed, S. Mouri, W. Zhang, K. Matsuda, Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide, Nano Research 10/2 (2017) 546- 555. DOI: https://doi.org/10.1007/s12274-016-1312-6
  • [18] A.S. Lazarenko, Model of Formation of Nano-Sized Whiskers Out of Channels of the Triple Junctions of Grain Boundaries of Polycrystal, Journal of Nano- and Electronic Physics 3/4 (2011) 59-64.
  • [19] J.-H. Jo, Photostability enhancement of InP/ZnS quantum dots enabled by In2O3 overcoating, Journal of Alloys and Compounds 647 (2015) 6-13. DOI: https://doi.org/10.1016/j.jallcom.2015.05.245
  • [20] T.K. Sliusariak, Y.M. Andriichuk, S.А. Vojtovych, M.А. Zhukovskyi, Y.B Khalavka, Synthesis of CdSe/ZnS nanoparticles with multiple photo-luminescence. Physics and Chemistry of Solid State 21/1 (2020) 105-112. DOI: https://doi.org/10.15330/pcss.21.1.105-112
  • [21] H. Chen, S. He, X. Hou, S. Wang, F. Chen, H. Qin, G. Zhou, Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode, Electrochimica Acta 312 (2019) 242-250. DOI: https://doi.org/10.1016/j.electacta.2019.04.170
  • [22] R. Xu, K. Zhang, R. Wei, M. Yuan, Y. Zhang, F. Liang, Y. Yao, High-capacity flour-based nano-Si/C composite anode materials for lithium-ion batteries, Ionics 26/1 (2020) 1-11. DOI: https://doi.org/10.1007/s11581-019-03224-w
  • [23] А. Pidluzhna, K. Ivaniuk, P. Stakhira, B. Minaev, H. Ågren, Multi-channel electroluminescence of CdTe/CdS core-shell quantum dots implemented into a QLED device, Dyes and Pigments 162 (2019) 647-653. DOI: https://doi.org/10.1016/j.dyepig.2018.10.074
  • [24] D. Vorontsov, G. Okrepka, Y. Khalavka, Effect of Nature of the Inorganic Salt Matrix on the Optical Properties and Photostability of CdTe/CdS Quantum Dots, Theoretical and Experimental Chemistry 55/2 (2019) 110-114. DOI: https://doi.org/10.1007/s11237- 019-09601-w
  • [25] S. Behera, P. W. Fry, H. Francis, C. Y. Jin, M. Hopkinson, Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications, Scientific Reports 10/1 (2020) 6269. DOI: https://doi.org/10.1038/s41598-020-63327-7
  • [26] B. Kumari, S. Kattayat, S. Kumar, S. Kaya, A. Katti, P. A. Alvi, Improved and tunable optical absorption characteristics of MQW GaAs/AlGaAs nano-scale heterostructure, Optik 208 (2020) 164544. DOI: https://doi.org/10.1016/j.ijleo.2020.164544
  • [27] C. Gao, M. Yao, C. Shuai, S. Peng, Y. Deng, Nano-SiC reinforced Zn biocomposites prepared via laser melting: Microstructure, mechanical properties and biodegradability, Journal of Materials Science & Technology 35/11 (2019) 2608-2617. DOI: https://doi.org/10.1016/j.jmst.2019.06.010
  • [28] Y.H. Kim, Y.W. Kim, W.S. Seo, Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity, Journal of the European Ceramic Society 40/7 (2020) 2623-2633. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.11.072
  • [29] W.K. Ng, Y. Han, K.M. Lau, K.S. Wong, Broadband telecom emission from InP/InGaAs nano-ridge lasers on silicon-on-insulator substrate, OSA Continuum 2/11 (2019) 3037-3043. DOI: https://doi.org/10.1364/OSAC.2.003037
  • [30] W. Fang, Y. Wang, T. Amemiya, N. Nishiyama, Investigation of bonding strength between (InP, Si)/SiO2 and Si by Surface Activated Bonding based on Fast Atom Beam assisted by Si nano-film, Proceedings of the JSAP-OSA Joint Symposia, Hokkaido, Japan, 2019, 20a_E215_2.
  • [31] О. Dobrozhan, І. Shelest, А. Stepanenko, D. Kurbatov, M. Yermakov, A. Čerškus, S. Plotnikov, А. Opanasyuk, Structure, substructure and chemical composition of ZnO nanocrystals and films deposited onto flexible substrates, Materials Science in Semiconductor Processing 108 (2020) 104879. DOI: https://doi.org/10.1016/j.mssp.2019.104879
  • [32] О. Dobrozhan, S. Vorobiov, D. Kurbatov, М. Baláž, М. Kolesnyk, О. Diachenko, V. Komanicky, А. Opanasyuk, Structural properties and chemical composition of ZnO films deposited onto flexible substrates by spraying polyol mediated nanoinks, Superlattices and Microstructures 140 (2020) 106455. DOI: https://doi.org/10.1016/j.spmi.2020.106455
  • [33] V.Y. Biloshapka, K.S. Semenova, V.Y. Platkov, D.O. Pimenov, Dislocation hysteresis in mixed state of superconductor II type, Journal of Nano- and Electronic Physics 10/4 (2018) 04018. DOI: https://doi.org/10.21272/jnep.10(4).04018
  • [34] M.T. Noman, M.A. Ashraf, A. Ali, Synthesis and applications of nano-TiO2: a review, Environmental Science and Pollution Research 26/4 (2019) 3262- 3291. DOI: https://doi.org/10.1007/s11356-018-3884-z
  • [35] V. Soolshenko, V. Beloshapka, Modes and twinning stresses of martensite variants rearrangements in near-stoichiometric Ni2MnGa single crystal, Metallofizika i Noveishie Tekhnologii 39/5 (2017) 567-578. DOI: https://doi.org/10.15407/mfint.39.05.0567
  • [36] P. Ganguly, M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, S.C. Pillai, 2D nanomaterials for photocatalytic hydrogen production, ACS Energy Letters 4/7 (2019) 1687-1709. DOI: https://doi.org/10.1021/acsenergylett.9b00940
  • [37] V. Sharma, T.K. Das, P. Ilaiyaraja, C. Sudakar, Oxygen non-stoichiometry in TiO2 and ZnO nano rods: Effect on the photovoltaic properties of dye and Sb2S3 sensitized solar cells, Solar Energy 191 (2019) 400-409. DOI: https://doi.org/10.1016/j.solener.2019.09.009
  • [38] G.R. Reddy, G.R. Dillip, T.V. Sreekanth, R. Rajavaram, B.D.P. Raju, P.C. Nagajyothi, J. Shim, Mechanistic investigation of defect-engineered, non-stoichiometric, and Morphology-regulated hierarchical rhombus- /spindle-/peanut-like ZnCo2O4 microstructures and their applications toward high-performance supercapa-citors, Applied Surface Science 529 (2020) 147123. DOI: https://doi.org/10.1016/j.apsusc.2020.147123
  • [39] Y.O. Suchikova, I.T. Bogdanov, S.S. Kovachov, Oxide crystals on the surface of porous indium phosphide. Archives of Materials Science and Engineering 98/2 (2019) 49-56. DOI: https://doi.org/10.5604/01.3001.0013.4606
  • [40] Y.O. Suchikova, Sulfide Passivation of Indium Phosphide Porous Surfaces, Journal of Nano- and Electronic Physics 9/11 (2017) 01006. DOI: https://doi.org/10.21272/jnep.9(1).01006
  • [41] A. Bateni, E. Erdem, W. Häßler, M. Somer, High-quality MgB2 nanocrystals synthesized by using modified amorphous nano-boron powders: Study of defect structures and superconductivity properties, AIP Advances 9/4 (2019) 045018. DOI: https://doi.org/10.1063/1.5089488
  • [42] O.A. Arda, E. Bayraktar, E. Tatoglu, How do integrated quality and environmental management practices affect firm performance? Mediating roles of quality performance and environmental proactivity, Business Strategy and the Environment 28/1 (2019) 64-78. DOI: https://doi.org/10.1002/bse.2190
  • [43] A. Gharaei, S.A. Hoseini Shekarabi, M. Karimi, E. Pourjavad, A. Amjadian, An integrated stochastic EPQ model under quality and green policies: generalised cross decomposition under the separability approach, International Journal of Systems Science: Operations & Logistics (2019) 1-13 (published online). DOI: https://doi.org/10.1080/23302674.2019.1656296
  • [44] K. Zhang, H. Gao, R. Deng, J. Li, Emerging Applications of Nanotechnology for Controlling Cell‐ Surface Receptor Clustering, Angewandte Chemie International Edition 58/15 (2019) 4790-4799. DOI: https://doi.org/10.1002/anie.201809006
  • [45] C.M. Damian, M.I. Necolau, I. Neblea, E. Vasile, H. Iovu, Synergistic effect of graphene oxide functionalized with SiO2 nanostructures in the epoxy nanocomposites. Applied Surface Science 507 (2020) 145046. DOI: https://doi.org/10.1016/j.apsusc.2019.145046
  • [46] Y. Fazaeli, O. Akhavan, R. Rahighi, M.R. Aboudzadeh, E. Karimi, H. Afarideh, In vivo SPECT imaging of tumors by 198,199 Au-labeled graphene oxide nano-structures, Materials Science and Engineering: C 45 (2014) 196-204. DOI: https://doi.org/10.1016/j.msec.2014.09.019
  • [47] D. Zappa, A. Bertuna, E. Comini, N. Kaur, N. Poli, V. Sberveglieri, G. Sberveglieri, Metal oxide nano-structures: preparation, characterization and functional applications as chemical sensors, Beilstein Journal of Nanotechnology 8/1 (2017) 1205-1217. DOI: https://doi.org/10.3762/bjnano.8.122
  • [48] V. Baroghel-Bouny, K. Kinomura, M. Thiery, S. Moscardelli, Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials, Cement and Concrete Composites 33/8 (2011) 832-847. DOI: https://doi.org/10.1016/j.cemconcomp.2011.04.007
  • [49] T.Y. Zagloel, M. Dachyar, F.N. Arfiyanto, Quality Improvement Using Model-Based and Integrated Process Improvement (MIPI) Methodology, Proceeding of the 11th International Conference on Quality in Research ‒ QIR, 2009.
  • [50] S. Vambol, I. Bogdanov, V. Vambol, H. Lopatina, N.Tsybuliak, Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide, Eastern-European Journal of Enterprise Technologies 6/5(90) (2017) 22-31. DOI: https://doi.org/10.15587/1729-4061.2017.118725
  • [51] S.H. Kim, K.J. Jang, Designing performance analysis and IDEF0 for enterprise modelling in BPR, International Journal of Production Economics 76/2 (2002) 121-133. DOI: https://doi.org/10.1016/S0925- 5273(00)00154-7
  • [52] M.N. Lakhoua, J. Salem, L. El Amraoui, The Need for System Analysis based on Two Structured Analysis Methods SADT and SA/RT, Acta Technica Corviniensis ‒ Bulletin of Engineering 11/1 (2018) 113-118.
  • [53] Y.A. Suchikova, V.V. Kidalov, G.A. Sukach, Influence of dislocations on the process of pore formation in n- InP (111) single crystals, Semiconductors 45/1 (2011) 121-124. DOI: https://doi.org/10.1134/S1063782611010192
  • [54] Y.A. Suchikova, V.V. Kidalov, G.A Sukach, Influence of type of electrolyte anion on the porous InP morphology obtained by electrochemical etching, Journal of Nano- and Electronic Physics 1/4 (2009) 111-118.
  • [55] P. Schmuki, L. Santinacci, T. Djenizian, D.J. Lockwood, Pore Formation on n‐InP, Physica Status Solidi (a) 182/1 (2000) 51-61. DOI: https://doi.org/10.1002/1521- 396X(200011)182:1%3C51::AID-PSSA51%3E3.0.CO;2-S
  • [56] T. Sato, T. Fujino, H. Hasegawa, Self-assembled formation of uniform InP nanopore arrays by electrochemical anodization in HCl based electrolyte, Applied Surface Science 252/15 (2006) 5457-5461. DOI: https://doi.org/10.1016/j.apsusc.2005.12.085
  • [57] N.V. Abrosimov, S.N. Rossolenko, V. Alex, A. Gerhardt, W. Schröder, Single crystal growth of Si1-xGex by the Czochralski technique, Journal of Crystal Growth 166/1-4 (1996) 657-662. DOI: https://doi.org/10.1016/0022-0248(96)00036-X
  • [58] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, O. Kondratenko, O. Hurenko, S. Onishchenko, Research into regularities of pore formation on the surface of semiconductors, Eastern-European Journal of Enterprise Technologies 3/5(87) (2017) 37-44. DOI: https://doi.org/10.15587/1729-4061.2017.104039
  • [59] R. Gassilloud, J. Michler, C. Ballif, Ph. Gasser, P. Schmuki, Selective etching of n-InP(1 0 0) triggered at surface dislocations induced by nanoscratching, Electrochimica Acta 51/11 (2006) 2182-2187. DOI: https://doi.org/10.1016/j.electacta.2005.03.085
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57e83cc0-beb8-4c88-a184-6cadd8a4522a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.