PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on the High Performance Characteristics of an Aluminized Ammonium Perchlorate Composite Solid Propellant Based on Nitrile Butadiene Rubber

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
n the present study, a high performance composite solid propellant formulation was prepared based on nitrile butadiene rubber (NBR) and dibutyl phthalate (DBP) plasticizer, which has a longer pot life and high density specific impulse. The developed cost effective novel binder system was prepared with readily available raw materials (NBR and DBP). The formulation of the composition was performed by varying the content of the NBR/DBP binder in the range of 14-20%. The rocket performance characteristics were determined theoretically using PROPEP and compared with those of an HTPB based propellant. The rheological, mechanical, physical, ballistic and thermal properties of the NBR/DBP propellant were studied and compared with literature data for similar compositions based on an HTPB/dioctyl adipate (DOA) binder. The yield stress was determined by spreadibilty measurements, and indicated the superiority of this binder based propellant over existing composite propellants. It was concluded that following decreasing the content of the NBR/DBP binder in the propellant from 20 to 14%: in the range 58.83-78.45 bar (5.883-7.845 MPa), the pressure index increased from 0.159 to 0.371, – at 68.64 bar (6.864 MPa), the burning rate increased from 4.10 to 6.54 mm/s, but the theoretical specific impulse value did not change significantly (258.0259.8 s), – the tensile strength and E-modulus increased from 6.03 to 9.88 (0.591-0.969) to and from 18.00 to 75.00 kgf/cm2 (1.765 to 7.355 MPa), respectively. Moreover, a DSC and TGA study indicated a lower decomposition temperature for the NBR/DBP propellant compared to the HTPB propellant. The NBR/DBP propellant exhibited a pot life more than double that of a conventional HTPB/ DOA based propellant.
Rocznik
Strony
492--511
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • High Energy Material Research Laboratory, Sutarwadi, Pune 411021, India
  • High Energy Material Research Laboratory, Sutarwadi, Pune 411021, India
  • High Energy Material Research Laboratory, Sutarwadi, Pune 411021, India
autor
  • High Energy Material Research Laboratory, Sutarwadi, Pune 411021, India
  • Defence Institute of Advanced Technology, Deemed University, Pune 411025, India
Bibliografia
  • [1] Devenas, A. Solid Rocket Propulsion Technology. Pergamon, France, 1992; ISBN 9780-0-08-098475-9.
  • [2] De Luca, L.T.; Shimada, T.; Sinditskii, V.P.; Calabro, M. The Chemical Rocket Propulsion. A Comprehensive Survey of Energetic Materials. 1st ed., Springer, 2015, p. 1084; ISBN 978-3-319-27746-2.
  • [3] Cauty, F.; Fabignon, Y.; Erades, C. New Active Binder-based Propellants: A Comparison with Classical Composite AP/HTPB Propellants. Int. J. Energ. Mater. Chem. Propul. 2013, 12(1): 1-13.
  • [4] Cheng, T. Review of Novel Energetic Polymers and Binders-High Energy Propellant Ingredients for the New Space Race. Des. Monomers Polym. 2019, 22(1): 54-65.
  • [5] Agarwal, J.P. High Energy Materials. Propellants, Explosives and Pyrotechnics. 1st ed., Wiley-VCH, Weinheim, 2010; ISBN 978-3-527-32610-5.
  • [6] Varghese, T.L.; Krishnamurthy, V.N. The Chemistry and Technology of Solid Rocket Propellants: (Treatise on Solid Propellants), 1st ed., Allied Publishers Pvt. Ltd, New Delhi, 2017, pp. 20-55; ISBN 9789385926334.
  • [7] Mason, B.P.; Roland, C.M. Solid Propellants. Rubber Chem. Technol. 2019, 92(1): 1-24.
  • [8] Jain, S.; Kshirsagar, D.R.; Khire, V.H.; Kandasubramanian, B. Evaluation of Strontium Ferrite (SrFe12O19) in Ammonium Perchlorate-based Composite Propellant Formulations. Cent. Eur. J. Energ. Mater. 2019, 16(1): 105-121.
  • [9] Jawalkar, S.N.; Mehilal; Ramesh, K.; Radhakrishnan, K.K.; Bhattacharya, B. Studies on the Effect of Plasticiser and Addition of Toluene Diisocyanate at Different Temperatures in Composite Propellant Formulations. J. Hazard. Mater. 2009, 164(2-3): 549-554.
  • [10] Babuk, V.A.; Vasilyev, V.A.; Malakhov, M.S. Condensed Combustion Products at the Burning Surface of Aluminized Solid Propellant. J. Propul. Power 1999, 15(6): 783-793.
  • [11] Wypych, G. Handbook of Plasticizers. 3rd ed., ChemTech Publishing, Toronto, New York, 2004; ISBN 9781927885161.
  • [12] Gupta, J.; Nunes, C.; Vyas, S.; Jonnalagadda, S. Prediction of Solubility Parameters and Miscibility of Pharmaceutical Compounds by Molecular Dynamics Simulations. J. Phys. Chem. C 121, 2017, 10163-10173.
  • [13] Alperstein, D.; Knani, D.; Goichman, A.; Narkis, M. Determination of Plasticizers Efficiency for Nylon by Molecular Modeling. Polym. Bull. 2012, 68: 1977-1988.
  • [14] Forster, A.; Hempenstall, J.; Tucker, I.; Rades, T. Selection of Excipients for Melts Extrusion with Two Poorly Water Soluble Drugs by Solubility Parameter Calculation and Thermal Analysis. Int. J. Pharm. 2001, 226(1-2): 147-161.
  • [15] Jing, L.; Shaohua, J.; Guanchao, L.; Shusen, C.; Lijie, L. Molecular Dynamics Simulations on Miscibility, Glass Transition Temperature and Mechanical Properties of PMMA/DBP Binary System. J. Mol. Graphics Modell. 2018, 84: 182-188.
  • [16] Muthiah, R.; Krishnamurthy, V.N.; Gupta, B.R. Rheology of HTPB Propellant. I. Effect of Solid Loading, Particle Size, and Aluminum Content. J. Appl. Polym. Sci. 1992, 44: 2043-2052.
  • [17] Dombe, G.; Yadav, N.K.; Lagade, R.M.; Bhongale, C.; Mehilal, Studies on Measurement of Yield Stress of Propellant Suspensions Using Forced Falling Ball and Slump Test. Appl. Rheology 2017, 27(4) paper 45262: 20-26.
  • [18] Yaman, H.; Çelik, V.; Değrimenci, E. Experimental Investigation of Factors Affecting the Burning Rate of Solid Rocket Propellant. Fuel 2014, 115: 794-803.
  • [19] Jain, S.R. Solid Propellant Binder. J. Sci. Ind. Res. 2002, 61: 899-911.
  • [20] Singh, H.; Singh, D.; Chimurkar, D.; Upadhayay, J.; Kumar, A.; Kumar, A.; Pande, S.; More, P. High Volumetric Specific Impulse Composite Propellant Based on Terminally Functionalized Block Copolymers of Polybutadiene and ε-Caprolactone. Propellants Explos. Pyrotech. 2019, 45(4): 647-656.
  • [21] Prasad, V.; Babu, S.; Raju, P. K.; Ranganathan, V.; Ninan, K. Effect of Process Parameters and Cure Catalysis on the HTPB-IPDI Based Solid Propellant Behavior. Int. J. Novel Res. Dev. 2018.
  • [22] Muthiah, R.; Krishnamurthy, V.N. Rheology of HTPB Propellant: Development of Generalized Correlation and Evaluation of Pot Life. Propellants Explos. Pyrotech. 1996, 21(4): 186-192.
  • [23] Jacobs, P.W.M.; Jones, R.A. Sublimation of Ammonium Perchlorate. J. Phys. Chem. 1968, 72(1): 202-207.
  • [24] Galway, A.K.; Jacobs, P.W.M. High Temperature Thermal Decomposition of Ammonium Perchlorate. J. Chem. Soc. 1959, paper 168: 837-844.
  • [25] Zhang, L.K.; Zheng, X.Y. Experimental Study on Thermal Decomposition Kinetics of Natural Ageing AP/HTPB Base Bleed Composite Propellant. Def. Technol. 2018, 14: 422-425.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57e47624-ef2b-4337-b18e-c3b8d4b19dee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.