PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ANSYS code applied to investigate the dynamics of composite sandwich beams

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical analysis of the effect of temperature on the dynamics of the sandwich beam model with a viscoelastic core is presented. The beam under analysis was described with a standard rheological model. This solution allows one to study the effect of temperature on material strength properties. Calculations were performed with the Finite ElementMethod in the ANSYS software. The analysis of the results of the numerical calculations showed a significant influence of temperature on the strength properties of the model under test. The analysis confirmed damping properties of viscoelastic materials.
Rocznik
Strony
62--71
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
  • Department of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
Bibliografia
  • [1] Ross, D.; Ungar, E.E.; Kerwin Jr. E.M. Damping of plate flexural vibrations by means of viscoelastic laminae. Structural Damping, Section III, ASME, New York, 1959
  • [2] Jones, D. I. G. Handbook of viscoelastic vibration damping, John Willey & Sons Ltd., 2001
  • [3] Rao, M.D. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. Journal of Sound and Vibration 2003, 262, pp. 457-474
  • [4] Martinez-Agirre, M.; Elejabarrieta, M.J. Characterization and modelling of viscoelastically damped sandwich structures. International Journal of Mechanical Science 2010, 52, pp. 1225-1233
  • [5] Cupiał, P.; Nizioł, J. Vibration and damping analysis of a threelayered composite plate with a viscoelastic mid-layer. Journal of Sound and Vibration 1995, 183, pp. 99-114
  • [6] Bagley, R.L.; Torvik, P.J. Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures. AIAA Journal 1985, 23, pp. 918-925
  • [7] Pritz, T. Analysis of four-parameter fractional derivative model of real solid materials. Journal of Sound and Vibration 1996, 195, pp. 103-115
  • [8] Beda, T.; Chevalier, Y. New Methods for Identifying Rheological Parameter for Fractional Derivative Modeling of Viscoelastic Behavior. Mechanics of Time-Dependent Materials 2004, 8, pp. 105-118
  • [9] Cortes, F.; Elejabarrieta, M.J. An approximate numerical method for the complex eigenproblem in systems characterised by a structural damping matrix. Journal of Sound and Vibration 2006, 296, pp. 166-182
  • [10] Cortes, F., Elejabarrieta, M.J. Viscoelastic materials characterisation using the seismic response. Materials and Design 2007, 28, pp. 2054-2062
  • [11] De Espindola, J. J.; Bavastri C. A.; De Oliveira Lopes E. M. Design of optimum systems of viscoelastic vibration absorbers for a given material based on the fractional calculus model. Journal of Vibration and Control 2008, pp. 1607-1630
  • [12] Monje C.A.; Chen Y.Q.; Vinagre B.M.; Xue D.; Feliu V. Fractionalorder systems and controls, Fundamentals and applications, Springer 2011
  • [13] Ghanbari M.; Haeri M. Order and pole locator estimation in fractional Order Systems. Signal Processing 2011, 91, pp. 191-202
  • [14] Rossikhin, Y.A.; Shitikova, M.V. Application of Fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Applied Mechanics Reviews 2010, 63, pp. 1-51
  • [15] Marynowski, K. Free vibration analysis of an axially moving multiscale composite plate including thermal effect. International Journal of Mechanical Science 2017, 120, pp. 62-69
  • [16] Marynowski, K. Vibration analysis of an axially moving sandwich beam with multiscale composite facings in thermal environment. International Journal of Mechanical Science 2018, pp. 146-147
  • [17] Rao, M.D.; Echempati, R.; Nadella, S. Dynamic analysis and damping of composite structures embedded with viscoelastic layers. Compos Part B Eng. 1997, 28(5-6), pp. 547-54
  • [18] Zhi Sun; Shanshan Shi; Xu Guo; Xiaozhi Hu; Haoran Chen. On compressive properties of composite sandwich structures with grid reinforced honeycomb core, Composites Part B Engineering 2016, 94, pp. 245-252
  • [19] Schneider C.; Kazemahvazi, S.; Zenkert, D.; Deshpande, V.S. Dynamic compression response of self-reinforced poly(ethylene terephthalate) composites and corrugated sandwich cores. Compos Part A Appl Sci Manuf 2015, 77, pp. 96-105
  • [20] Zhou, J.; Guan, Z. W.; Cantwel, W. J. Scaling effects in the mechanical response of sandwich structures based on corrugated composite cores. Composites Part B: Engineering 2016, 93, pp. 88-96
  • [21] Kumar, A.; Chakrabarti, A.; Bhargava, P. Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory. Compos Struct. 2013,106, pp. 270-81
  • [22] Zhou, X.Q.; Yu, D.Y.; Shao, X.; Wang, S.; Zhang, S.Q. Simplifiedsuper- element method for analyzing free flexural vibration characteristics of periodically stiffened-thin-plate filled with viscoelastic damping material. Thin-Walled Struct. 2015, 94, pp. 234-252
  • [23] Zhou, X.Q.; Yu, D. Y.; Shao, X. Y.; Wang, S.; Zhang, S.Q. Asymptotic analysis for composite laminated plate with periodically fillers in viscoelastic damping material core. Composites Part B Engineering 2016, 96, pp. 45-62
  • [24] Rajamohan, V.; Sedaghati, R.S.; Rakheja, S. Vibration analysis of a multi-layer beam containing magnetorheological fluid. Smart- Mater.Struct. 2010, 19(1), 015013
  • [25] Yeh, J.Y. Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment. Smart- Mater.Struct. 2013, 22(3), 035010
  • [26] Grochowska K. Dynamics of the three-layer composite with a viscoelastic core. PhD Dissertation, Lodz University of Technology, 2016 (in Polish)
  • [27] Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed., Wiley, 1981
  • [28] Chen, X.; Liu, Y. Finite Element Modeling and Simulations with Ansys Workbench, second edition, CRC Press, Taylor & Francis Group, 2019, pp. 261-276
  • [29] https://www.edla ngineeringtoolbox.com/young-modulus-d_77 3.html
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57dfaa6e-37a9-4c0e-bf5d-de8bb9614ce2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.