PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of butanol, pentanol and diesel in a compression ignition engine: A review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using oxygenated alternative fuels in compression ignition (CI) engines is feasible for energy security problems and climate change. Alcohols are regarded as alternative fuels for compression ignition engines because of their excellent physicochemical features, emission, and combustion characteristics. Research on alcohols and their additions has progressed significantly in recent years. Several researchers have examined the combined effect of higher alcohol with diesel and their impact and challenged that concentrations of higher alcohol reduce harmful particulate emissions in CI engines. This paper mainly focused on the performance and emissions properties of higher alcohols like butanol and pentanol. Alcohol has a low energy content, typically affecting engine brake-specific fuel consumption (BSFC). Low-temperature combustion (LTC) in compression ignition engines can lower NOx and smoke emissions, and improve the efficiency of the engine. LTC is done by combining higher alcohol with increased exhaust gas recirculation (EGR) rate and retarded fuel injection timing. The higher alcohol, along with the oxygen in the fuel reduces exhaust fumes, improves the air/fuel mixture by providing a longer ignition delay (ID), and can replace the fossil fuel like diesel (partially or whole) to allow efficient and clean combustion in CI engines. Finally, several significant findings and comments are provided regarding potential avenues for experimental research and future development. According to thorough analysis, bio-alcohols are considered to be a substitute fuel for CI engines.
Słowa kluczowe
Twórcy
autor
  • Department of Mechanical Engineering, Delhi Technological University, New Delhi, India, 110042
autor
  • Centre for Advanced Studies and Research in Automotive Engineering, Delhi Technological University, Delhi, India, 110042
  • Department of Mechanical Engineering, Delhi Technological University, New Delhi, India, 110042
Bibliografia
  • [1] Singh, P., Varun, Chauhan, S.R., & Kumar, N. (2016). A review on methodology for complete elimination of diesel from CI engines using mixed feedstock. Renewable and Sustainable Energy Reviews, 57, 1110–1125. doi: 10.1016/j.rser.2015.12.090
  • [2] Panoutsou, C., Germer, S., Karka, P., Papadokostantakis, S., Kroyan, Y., Wojcieszyk, M., Maniatis, K., Marchand, P., & Landalv, I. (2021). Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strategy Reviews, 34,100633. doi: 10.1016/j.esr.2021.100633
  • [3] IEA (2021), India Energy Outlook 2021. IEA, Paris. https://www.iea.org/reports/india-energy-outlook-2021
  • [4] IEA (2023), Oil Market Report - April 2023, IEA, Paris https://www.iea.org/reports/oil-market-report-april-2023.
  • [5] Nabi, Md.N. (2010). Theoretical investigation of engine thermal efficiency, adiabatic flame temperature, NOx emission and combustion-related parameters for different oxygenated fuels. Applied Thermal Engineering, 30(8-9), 839–844. doi: 10.1016/ j.applthermaleng.2009.12.015
  • [6] Salvi, B.L., Subramanian, K.A., & Panwar, N.L. (2013). Alternative fuels for transportation vehicles: A technical review. Renewable and Sustainable Energy Reviews, 25, 404–419. doi: 10.1016/j.rser.2013.04.017
  • [7] Yilmaz, N., Donaldson, A.B., & Johns, A. (2005). Some Perspectives on Alcohol Utilization in a Compression Ignition Engine. SAE Technical Paper, 2005-01-3135. doi: 10.4271/2005-01-3135
  • [8] Wu, G., Wang, X., Abubakar, S., Li, Y., & Liu, Z. (2021). A realistic skeletal mechanism for the oxidation of biodiesel surrogate composed of long carbon chain and polyunsaturated compounds. Fuel, 289, 119934. doi: 10.1016/j.fuel.2020.119934
  • [9] Jeevanantham, A.K., Nanthagopal, K., Ashok, B., Al-Muhtaseb, A.H., Thiyagarajan, S., Geo, V.E., Ong, H.C., & Samuel, K.J. (2019). Impact of addition of two ether additives with high speed diesel- Calophyllum Inophyllum biodiesel blends on NOx reduction in CI engine. Energy, 185, 39–54. doi: 10.1016/j.energy.2019.07.013
  • [10] Atmanli, A., Ileri, E., & Yilmaz, N. (2016). Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters. Energy, 96, 569–580. doi: 10.1016/j.energy.2015.12.091
  • [11] Atmanli, A., & Yilmaz, N. (2018). A comparative analysis of nbutanol/diesel and 1-pentanol/diesel blends in a compression ignition engine. Fuel, 234, 161–169. doi: 10.1016/j.fuel.2018.07.015
  • [12] Fayyazbakhsh, A., & Pirouzfar, V. (2017). Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance. Renewable and Sustainable Energy Reviews, 74, 891–901. doi: 10.1016/j.rser.2017.03.046
  • [13] Li, L., Wang, J., Wang, Z., & Liu, H. (2015). Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol. Energy, 80, 575–581. doi: 10.1016/j.energy.2014.12.013
  • [14] Ma, Y., Huang, R., Fu, J., Huang, S., & Liu, J. (2018). Development of a diesel/biodiesel/alcohol (up to n-pentanol) combined mechanism based on reaction pathways analysis methodology. Applied Energy, 225, 835–847. doi: 10.1016/j.apenergy.2018.05.065
  • [15] EL-Seesy, A.I., Waly, M.S., He, Z., El-Batsh, H.M., Nasser, A., & El-Zoheiry, R.M. (2021). Influence of quaternary combinations of biodiesel/methanol/n-octanol/diethyl ether from waste cooking oil on combustion, emission, and stability aspects of a diesel engine. Energy Conversion and Management, 240,114268. doi: 10.1016/j.enconman.2021.114268
  • [16] Agarwal, A.K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33(3), 233–271. doi: 10.1016/j.pecs.2006.08.003
  • [17] Ghadikolaei, M.A., Yung, K.-F., Cheung, C.S., Ho, S.S.H., & Wong, P.K. (2020). Non-polar organic compounds, volatility and oxidation reactivity of particulate matter emitted from diesel engine fueled with ternary fuels in blended and fumigation modes. Chemosphere, 249, 126086. doi: 10.1016/j.chemosphere.2020.126086
  • [18] Liu, H., Wang, X., Wu, Y., Zhang, X., Jin, C., & Zheng, Z. (2019). Effect of diesel/PODE/ethanol blends on combustion and emissions of a heavy duty diesel engine. Fuel, 257, 116064. doi:10.1016/j.fuel.2019.116064
  • [19] Gao, Z., Wu, S., Luo, J., Zhang, B., Zhang, H., & Xiao, R. (2021). Optimize the co-solvent for methanol in diesel with group of oxygen-containing reagents: Molecular structure and intermolecular forces analysis. Fuel Processing Technology, 222, 106980.doi: 10.1016/j.fuproc.2021.106980
  • [20] Thakur, A.K., Kaviti, A.K., Singh, R., & Gehlot, A. (2020). An overview of butanol as compression ignition engine fuel. International Journal of Energy for a Clean Environment, 21(4), 333– 354. doi: 10.1615/InterJEnerCleanEnv.2020033667
  • [21] Jin, C., Zhang, X., Han, W., Geng, Z., Tessa Margaret Thomas, M., Dankwa Jeffrey, A., Wang, G., Ji, J., & Liu, H. (2020). Macro and micro solubility between low-carbon alcohols and rapeseed oil using different co-solvents. Fuel, 270, 117511. doi: 10.1016/j.fuel.2020.117511
  • [22] Raman, R., & Kumar, N. (2019). The utilization of n-butanol/diesel blends in Acetylene Dual Fuel Engine. Energy Reports, 5,1030–1040. doi: 10.1016/j.egyr.2019.08.005
  • [23] Visioli, L.J., Enzweiler, H., Kuhn, R.C., Schwaab, M., & Mazutti, M.A. (2014). Recent advances on biobutanol production. Sustainable Chemical Processes, 2, 15. doi: 10.1186/2043-7129-2-15
  • [24] Heywood, J.B. (2018). Internal Combustion Engine Fundamentals (2nd ed.). McGraw-Hill Education, New York.
  • [25] Yanai, T., Han, X., Reader, G.T., Zheng, M., & Tjong, J. (2015). Preliminary investigation of direct injection neat n-butanol in a diesel engine. Journal of Energy Resources Technology, 137(1),012205. doi: 10.1115/1.4028519
  • [26] Gautam, R., Chauhan, B.S., & Chang Lim, H. (2022). Influence of variation of injection angle on the combustion, performance and emissions characteristics of Jatropha Ethyl Ester. Energy,254C, 124436. doi: 10.1016/j.energy.2022.124436
  • [27] Kumar, M., Singh, V.K., Sharma, A., Ansari, N.A., Gautam, R., & Singh, Y. (2022). Effect of fuel injection pressure and EGR techniques on various engine performance and emission characteristics on a CRDI diesel engine when run with linseed oil methyl ester. Energy & Environment, 33(1), 41–63. doi: 10.1177/0958305X20983477
  • [28] Huang, H., Zhou, C., Liu, Q., Wang, Q., & Wang, X. (2016). An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends. Applied Energy, 170, 219–231.doi: 10.1016/j.apenergy.2016.02.126
  • [29] Žvar Baškovič, U., Vihar, R., Rodman Oprešnik, S., Seljak, T., & Katrašnik, T. (2022). RCCI combustion with renewable fuel mix – Tailoring operating parameters to minimize exhaust emissions. Fuel, 311, 122590. doi: 10.1016/j.fuel.2021.122590
  • [30] Nachippan, N.M., Parthasarathy, M., Elumalai, P.V., Backiyaraj, A., Balasubramanian, D., & Hoang, A.T. (2022). Experimental assessment on characteristics of premixed charge compression ignition engine fueled with multi-walled carbon nanotube-included Tamanu methyl ester. Fuel, 323, 124415. doi: 10.1016/j.fuel.2022.124415
  • [31] Gainey, B., Yan, Z., & Lawler, B. (2021). Autoignition characterization of methanol, ethanol, propanol, and butanol over a wide range of operating conditions in LTC/HCCI. Fuel, 287, 119495. doi: 10.1016/j.fuel.2020.119495
  • [32] Khan, H., Soudagar, M.E.M., Kumar, R.H., Safaei, M.R., Farooq, M., Khidmatgar, A., Banapurmath, N.R., Farade, R.A., Abbas, M.M., Afzal, A., Ahmed, W., Goodarzi, M., & Taqui, S.N. (2020). Effect of nano-graphene oxide and n-butanol fuel additives blended with diesel-Nigella sativa biodiesel fuel emulsion on diesel engine characteristics. Symmetry, 12(6), 961. doi:10.3390/sym12060961
  • [33] Liu, X., Wang, H., Zheng, Z., & Yao, M. (2021). Development of a reduced primary reference fuel-PODE3-methanol-ethanol-nbutanol mechanism for dual-fuel engine simulations. Energy, 235, 121439. doi: 10.1016/j.energy.2021.121439
  • [34] Lapuerta, M., García-Contreras, R., Campos-Fernández, J., & Dorado, M.P. (2010). Stability, Lubricity, viscosity, and coldflow properties of alcohol−diesel blends. Energy & Fuels, 24(8), 4497–4502. doi: 10.1021/ef100498u
  • [35] Rakopoulos, D.C., Rakopoulos, C.D., Papagiannakis, R.G., & Kyritsis, D.C. (2011). Combustion heat release analysis of ethanol or n-butanol diesel fuel blends in heavy-duty DI diesel engine. Fuel, 90(5), 1855–1867. doi: 10.1016/j.fuel.2010.12.003
  • [36] Huang, Z., Lu, H., Jiang, D., Zeng, K., Liu, B., Zhang, J., & Wang, X. (2005). Performance and emissions of a compression ignition engine fueled with diesel/oxygenate blends for various fuel delivery advance angles. Energy & Fuels, 19(2), 403–410. doi: 10.1021/ef049855d
  • [37] Huang, J., Wang, Y., Li, S., Roskilly, A.P., Yu, H., & Li, H. (2009). Experimental investigation on the performance and emissions of a diesel engine fuelled with ethanol-diesel blends. Applied Thermal Engineering, 29(11-12), 2484–2490. doi: 10.1016/j.applthermaleng.2008.12.016
  • [38] Chandra, R., & Kumar, R. (2007). Fuel properties of some stable alcohol-diesel microemulsions for their use in compression ignition engines. Energy & Fuels, 21(6), 3410–3414. doi: 10.1021/ef0701788
  • [39] Asfar, K.R., & Hamed, H. (1998). Combustion of fuel blends. Energy Conversion and Management, 39(10), 1081–1093. doi:10.1016/S0196-8904(97)00034-4
  • [40] Ahmed, I. (2001). Oxygenated diesel: Emissions and performance characteristics of ethanol-diesel blends in CI engines. SAE Technical Paper, 2001-01-2475. doi: 10.4271/2001-01-2475
  • [41] Al-Hasan, M.I., & Al-Momany, M. (2008). The effect of iso‐butanol-diesel blends on engine performance. Transport, 23(4), 306–310. doi: 10.3846/1648-4142.2008.23.306-310
  • [42] Yao, M., Wang, H., Zheng, Z., & Yue, Y. (2010). Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions. Fuel, 89(9), 2191–2201. doi:10.1016/j.fuel.2010.04.008
  • [43] Kozak, M., & Merkisz, J. (2022). oxygenated diesel fuels and their effect on PM emissions. Applied Sciences, 12(15), 7709.doi: 10.3390/app12157709
  • [44] Cann, A.F., & Liao, J.C. (2010). Pentanol isomer synthesis in engineered microorganisms. Applied Microbiology and Biotechnology, 85, 893–899. doi: 10.1007/s00253-009-2262-7
  • [45] Rajesh Kumar, B., & Saravanan, S. (2015) Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel,160, 217–226. doi: 10.1016/j.fuel.2015.07.089
  • [46] Campos-Fernandez, J., Arnal, J.M., Gomez, J., Lacalle, N., & Dorado, M.P. (2013). Performance tests of a diesel engine fueled with pentanol/diesel fuel blends. Fuel, 107, 866–872. doi:10.1016/j.fuel.2013.01.066
  • [47] Dahman, Y., Dignan, C., Fiayaz, A., & Chaudhry, A. (2019). An introduction to biofuels, foods, livestock, and the environment. In Biomass, Biopolymer-Based Materials, and Bioenergy (pp. 241–276). Woodhead Publishing. doi: 10.1016/B978-0-08-102426-3.00013-8
  • [48] Yilmaz, N., & Atmanli, A. (2017). Experimental evaluation of a diesel engine running on the blends of diesel and pentanol as a next generation higher alcohol. Fuel, 210, 75–82. doi: 10.1016/j.fuel.2017.08.051
  • [49] Chen, Z., Liu, J., Han, Z., Du, B., Liu, Y., & Lee, C. (2013). Study on performance and emissions of a passenger-car diesel engine fueled with butanol-diesel blends. Energy, 55, 638–646. doi:10.1016/j.energy.2013.03.054
  • [50] Zhang, Z.-H., Chua, S.-M., & Balasubramanian, R. (2016). Comparative evaluation of the effect of butanol–diesel and pentanoldiesel blends on carbonaceous particulate composition and particle number emissions from a diesel engine. Fuel, 176,40–47. doi: 10.1016/j.fuel.2016.02.061
  • [51] Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., & Kyritsis, D.C. (2010). Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Conversion and Management, 51(10), 1989–1997. doi: 10.1016/j.enconman.2010.02.032
  • [52] Pan, M., Tong, C., Qian, W., Lu, F., Yin, J., & Huang, H. (2020). The effect of butanol isomers on diesel engine performance, emission and combustion characteristics under different load conditions. Fuel, 277, 118188. doi: 10.1016/j.fuel.2020.118188
  • [53] Zhang, Z., Tian, J., Xie, G., Li, J., Xu, W., Jiang, F., Huang, Y., & Tan, D. (2022). Investigation on the combustion and emission characteristics of diesel engine fueled with diesel/methanol/n-butanol blends. Fuel, 314, 123088. doi: 10.1016/j.fuel.2021.123088
  • [54] Zhang, Z., Li, J., Tian, J., Dong, R., Zou, Z., Gao, S., & Tan, D. (2022). Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends. Energy, 249, 123733. doi: 10.1016/j.energy.2022.123733
  • [55] Huang, H., Li, Z., Teng, W., Zhou, C., Huang, R., Liu, H., & Pan, M. (2019). Influence of n-butanol-diesel-PODE3-4 fuels coupled pilot injection strategy on combustion and emission characteristics of diesel engine. Fuel, 236, 313–324. doi: 10.1016/j.fuel.2018.09.051
  • [56] Sahu, T.K., & Shukla, P.C. (2022). Combustion and emission characteristics of butanol-diesel blend (B15) doped with diethyl ether, diglyme and ethyl diglyme in a CRDI diesel engine. SAE Technical Paper, 2022-01-1073. doi: 10.4271/2022-01-1073
  • [57] Yilmaz, N., Vigil, F., & Donaldson, B. (2022). Effect of n-butanol addition to diesel fuel on reduction of PAH formation and regulated pollutants. Polycyclic Aromatic Compounds, 43(10),8785–8799. doi: 10.1080/10406638.2022.2153881
  • [58] Ahmad, K., & Saini, P. (2022). Effect of butanol additive with mango seed biodiesel and diesel ternary blends on performance and emission characteristics of diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(4),9988–10005. doi: 10.1080/15567036.2022.2143954
  • [59] Duan, X., Xu, Z., Sun, X., Deng, B., & Liu, J. (2021). Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone-butanol-ethanol/diesel blend fuels. Energy, 231, 121069. doi: 10.1016/j.energy.2021.121069
  • [60] Chen, Q., Wang, C., Shao, K., Liu, Y., Chen, X., & Qian, Y. (2022). Analyzing the combustion and emissions of a DI diesel engine powered by primary alcohol (methanol, ethanol, n-butanol)/diesel blend with aluminum nano-additives. Fuel, 328,125222. doi: 10.1016/j.fuel.2022.125222
  • [61] Rajesh Kumar, B., & Saravanan, S. (2015a). Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel,160, 217–226. doi: 10.1016/j.fuel.2015.07.089
  • [62] Huang, H., Lv, D., Zhu, J., Chen, Y., Zhu, Z., Pan, M., Huang, R., & Jia, C. (2018). Development and validation of a new reduced diesel/n-pentanol mechanism for diesel engine applications. Energy & Fuels, 32(9), 9934–9948. doi: 10.1021/ acs.energyfuels.8b02083
  • [63] Rajesh Kumar, B., & Saravanan, S. (2016). Effects of iso-butanol/diesel and n-pentanol/diesel blends on performance and emissions of a DI diesel engine under premixed LTC (low temperature combustion) mode. Fuel, 170, 49–59. doi: 10.1016/j.fuel.2015.12.029
  • [64] Zhang, Z.-H., Chua, S.-M., & Balasubramanian, R. (2016). Comparative evaluation of the effect of butanol-diesel and pentanoldiesel blends on carbonaceous particulate composition and particle number emissions from a diesel engine. Fuel, 176, 40–47. doi:10.1016/j.fuel.2016.02.061
  • [65] Ashok, A., Gugulothu, S.K., Venkat Reddy, R., Burra, B., & Panda, J.K. (2022). A systematic study of the influence of 1-pentanol as the renewable fuel blended with diesel on the reactivity controlled compression ignition engine characteristics and Tradeoff study with variable fuel injection pressure. Fuel, 322, 124166.doi: 10.1016/j.fuel.2022.124166
  • [66] Venkatesan, S.P., Srihariharan, P., Rohith, B., Purusothaman, M., & Venkatesh, S. (2023). Study of the performance and emissions of diesel engines operating by blends of Jatropha biodiesel, diesel and pentanol. Materials Today: Proceedings, 72(4), 2513–2517.doi: 10.1016/j.matpr.2022.09.532
  • [67] Yilmaz, N., Atmanli, A., Hall, M.J., & Vigil, F.M. (2022). Determination of the optimum blend ratio of diesel, waste oil derived biodiesel and 1-pentanol using the response surface method. Energies, 15(14), 5144. doi: 10.3390/en15145144
  • [68] Ramachander, J., Gugulothu, S.K., Sastry, G.R., & Bhsker, B. (2022). An experimental assessment on the influence of high fuel injection pressure with ternary fuel (diesel-mahua methyl esterpentanol) on performance, combustion, and emission characteristics of common rail direct injection diesel engine. Environmental Science and Pollution Research, 29, 119–132. doi: 10.1007/s11356-021-13909-3
  • [69] Ashok, A., Gugulothu, S.K., Reddy, R.V., & Burra, B. (2023). Influence of fuel injection timing and trade-off study on the RCCI engine characteristics of Jatropha oil-diesel blend under 1-pentanol dual-fuel strategies. Environmental Science and Pollution Research. 30, 98848–98857. doi: 10.1007/s11356-022-22039-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57de4c39-f42e-45ab-888a-4da603897426
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.