PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on dynamic response of offshore wind turbine structure under typhoon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Floating offshore wind turbines are easily affected by typhoons in the deep sea, which may cause serious damage to their structure. Therefore, it is necessary to study further the dynamic response of wind turbine structures under typhoons. This paper took the 5MW floating offshore wind turbine developed by the National Renewable Energy Laboratory (NREL) as the research object. Based on the motion theory of platforms in waves, a physical model with a scale ratio of 1:120 was established, and a hydraulic cradle was used to simulate the effect of waves on the turbines. The dynamic response characteristics of offshore wind turbines under typhoons are systematically studied. The research results clarified that the turbine structure is mainly affected by wave loads under typhoons, and its motion response reaches its maximum value under the action of extreme wave loads. The research results of this paper can provide reference value for the design of offshore wind turbine structures under typhoons.
Rocznik
Tom
Strony
34--42
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Wuhan University of Technology, No.1178, Heping Avenue, 430063 Wuhan, Hubei, China
autor
  • Wuhan University of Technology, No.1178, Heping Avenue, 430063 Wuhan, Hubei, China
autor
  • ZheJiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, 316022 Zhoushan, Zhejiang, China
autor
  • ZheJiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, 316022 Zhoushan, Zhejiang, China
autor
  • ZheJiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, 316022 Zhoushan, Zhejiang, China
autor
  • ZheJiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, 316022 Zhoushan, Zhejiang, China
autor
  • ZheJiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, 316022 Zhoushan, Zhejiang, China
autor
  • ZheJiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, 316022 Zhoushan, Zhejiang, China
autor
  • ZheJiang Ocean University, No.1, Haida South Road, Lincheng Changzhi Island, 316022 Zhoushan, Zhejiang, China
Bibliografia
  • 1. D. Gielen, F. Boshell, D. Saygin, et al. ‘The role of renewable energy in the global energy transformation’, Energy Strategy Reviews. 2019, doi: 10.1016/j.esr.2019.01.006
  • 2. P. Veers, K Dykes, E. Lantz, et al. ‘Grand challenges in the science of wind energy’, Science. 2019, doi: 10.1126/science. aau2027
  • 3. K. Y. Oh, W. Nam, M. S. Ryu, et al. ‘A review of foundations of offshore wind energy convertors: Current status and future perspectives’, Renewable and Sustainable Energy Reviews. 2018, doi: 10.1016/j.rser.2018.02.005
  • 4. Y. Li, X. Huang, K. F. Tee, et al. ‘Comparative study of onshore and offshore wind characteristics and wind energy potentials: A case study for southeast coastal region of China’, Sustainable Energy Technologies and Assessments. 2020, doi: 10.1016/j.seta.2020.100711
  • 5. Z. Ren, A. S. Verma, Y. Li, et al. ‘Offshore wind turbine operations and maintenance: A state-of-the-art review’, Renewable and Sustainable Energy Reviews. 2021, doi: 10.1016/j.rser.2021. 110886
  • 6. A. Tomporowski, I. Piasecka, J. Flizikowski, et al. ‘Comparison analysis of blade life cycles of land-based and offshore wind power plants’, Polish Maritime Research. 2018, doi: 10.2478/ pomr-2018-0046
  • 7. Y. Zhou, Q. Xiao, Y. Liu, et al. ‘Numerical modelling of dynamic responses of a floating offshore wind turbine subject to focused waves’, Energies. 2019, doi: 10.3390/en12183482
  • 8. [8] L. Chen, B. Basu. ‘Wave‐current interaction effects on structural responses of floating offshore wind turbines’, Wind Energy. 2019, doi: 10.1002/we.2288
  • 9. D. Tang, M. Xu, J. Mao, et al. ‘Unsteady performances of a parked large-scale wind turbine in the typhoon activity zones’, Renewable Energy. 2020, doi: 10.1016/j. renene.2019.12.042
  • 10. R. Han, L. Wang, T. Wang, et al. ‘Study of Dynamic Response Characteristics of the Wind Turbine Based on Measured Power Spectrum in the Eyewall Region of Typhoons’, Applied Sciences. 2019, doi: 10.3390/app9122392
  • 11. N. Aggarwal, R. Manikandan, N. Saha. ‘Nonlinear short term extreme response of spar type floating offshore wind turbines’, Ocean Engineering. 2017, doi: 10.1016/j. oceaneng.2016.11.062.
  • 12. T. T. Tran, D. H. Kim. ‘The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis’, Journal of Wind Engineering and Industrial Aerodynamics. 2015, doi: 10.1016/j. jweia.2015.03.009
  • 13. D. Roddier, C. Cermelli, A. Aubault, et al. ‘WindFloat: A floating foundation for offshore wind turbines’, Journal of Renewable and Sustainable Energy. 2010, doi: 10.1063/1.3435339
  • 14. Z. Chen, X. Wang, Y. Guo, et al. ‘Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions’, Renewable Energy. 2021, doi: 10.1016/j.renene.2020.10.096
  • 15. T. Ishihara, Y. Liu. ‘Dynamic Response Analysis of a Semi- Submersible Floating Wind Turbine in Combined Wave and Current Conditions Using Advanced Hydrodynamic Models’, Energies. 2020, doi: 10.3390/en13215820
  • 16. G. Clauss, E. Lehmann, C. Östergaard. Offshore Structures: volume I: ‘Conceptual design and hydromechanics’. Springer, 2014.
  • 17. W. W. Massie, J. M. Journée. ‘Offshore hydromechanics’. Delft University of Technology: Delft, The Netherlands, 2001.
  • 18. Y. Fang, et al. ‘Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion’, Energy. 2020, doi:10.1016/j.energy.2019.116621
  • 19. S. K. Chakrabarti. Offshore structure modeling’. Vol. 9. WorldScientific, 1994.
  • 20. L. Yu, C. Ying. ‘CFD analysis for a set of axial fan arrayto produce inflow for wind turbine model test’, 29thInternational Ocean and Polar Engineering Conference.OnePetro, 2019.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57dcc416-6b55-41b3-87fe-3779ec55f163
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.