PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of nanosilica and binary oxide systems on the selected physical and mechanical properties of cement composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of physical and mechanical tests of cement composites that include small amounts of nanosilica, as well as systems of nanosilica with less commonly used iron and nickel nanooxides. In the work, a physicochemical analysis of the nanooxides was performed to compare their morphological and structural properties, to determine their temperature stability and to assess their behavior in the cement matrix environment. Particle distribution analysis indicated a tendency for nanooxide particles to aggregate and agglomerate, with nickel nanooxide showing the highest degree of homogeneity. For iron nanooxide, the largest size scatter and the largest particle aggregates were observed. As expected, the nanosilica displayed the highest specific surface area, whereas, both nickel and iron nanooxide exhibited higher electrokinetic and temperature stability compared to nanosilica, which guarantees their durability in high pH cement matrixes. Cement composites with oxide additions had slightly lower density and comparable absorbability after 28 days of curing, as compared to pure mortar. In the case of nanosilica, after 7 days of curing, a significant increase in compressive strength was observed in comparison with pure mortar, while the strengths were slightly lower at a later time. Synergistic application of nanosilica with nickel or iron nanooxide resulted in significant increases in strength after 28 and 90 days of curing, where the effect of nanosilica alone was not as spectacular.
Słowa kluczowe
Rocznik
Strony
art. no. 144184
Opis fizyczny
Bibliogr. 27 poz., rys., kolor., tab., wykr.
Twórcy
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland
  • nstitute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
Bibliografia
  • BAGWE, R.P., HILLIARD, L.R., TAN, W., 2006. Surface modification of silica nanoparticles to reduce aggregation and non-specific binding, Langmuir, 22, 4357-4362.
  • BOWEN, G., DING, D., WANG, L., WU, J., XIONG, R., 2017. The electromagnetic wave absorbing properties of cementbased composites using natural magnetite powders as absorber, Mater. Res. Express, 4, 056103.
  • CERRO-PRADA, E., MANSO, M., TORRES, V., SORIANO, J., 2015. Microstructural and photocatalytic characterization of cement-paste sol-gel synthesized titanium dioxide, Front. Struct. Civ. Eng., 10, 189-197.
  • DORCHEH, A.S., ABBASI, M.H., 2008. Silica aerogel; synthesis, properties and characterization, J. Mater. Process. Technol. 199, 10-26.
  • HASAN, K., SHEHADI, I.A., AL-BAB, N.D., ELGAMOUZ, A., 2019. Magnetic chitosan-supported silver nanoparticles: a heterogeneous catalyst for the reduction of 4-nitrophenol, Catalysts, 9, 839.
  • JANCZAREK, M., KLAPISZEWSKI, Ł., JĘDRZEJCZAK, P., KLAPISZEWSKA, I., ŚLOSARCZYK, A., JESIONOWSKI, T., 2021. Progress of functionalized TiO2-based nanomaterials in the construction industry: A comprehensive review, Chem. Eng. J. doi: 10.1016/j.cej.2021.132062.
  • KAMADA, K., TOKUTOMI, M., ENOMOTO, N., HOJO, J., 2005. Incorporation of oxide nanoparticles into barrier-type alumina film via anodic oxidation combined with electrophoretic deposition, J. Mater. Chem., 15, 3388–3394.
  • KLAPISZEWSKI, Ł., BULA, K., SOBCZAK, M., JESIONOWSKI, T., 2016. Influence of processing conditions on the thermal stability and mechanical properties of PP/Silica-Lignin composites, Int. J. Polym. Sci., Article ID 1627258.
  • KLAPISZEWSKI, Ł., KRÓLAK, M., JESIONOWSKI, T., 2014. Silica synthesis by the sol-gel method and its use in the preparation of multifunctional biocomposites, Centr. Eur. J. Chem., 12, 173-184.
  • KRYSZTAFKIEWICZ, A., RAGER, B., JESIONOWSKI, T., 1997. The effect of surface modification on physicochemical properties of precipitated silica, J. Mater. Sci., 32, 1333-1339.
  • LI, H., XIAO, H., YUAN, J., OU, J., 2004. Microstructure of cement mortar with nano-particles, Compos. B. Eng., 35, 185-189.
  • MA, M., YANG, Y., LI, W., FENG, R., LI, Z., LYU, P., MA, Y., 2019. Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol, J. Mater. Sci., 54, 323-334.
  • NAZARI, A., RAFIEIPOUR, M.H., RIAHI, S., 2011. The Effects of CuO Nanoparticles on Properties of Self Compacting Concrete with GGBFS as Binder. Mat. Res., 14, 307-316.
  • NEGAHDARY, M., HABIBI-TAMIJANI, A., ASADI, A., AYATI, S., 2013. Synthesis of Zirconia Nanoparticles and Their Ameliorative Roles as Additives Concrete Structures, J. Chem. 2013, 314862.
  • OTULU, M., ŞAHIN, R., 2011, Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume, Mater. Sci. Eng., A. 528, 7012–7019.
  • REN, J., LAI, Y., GAO, J., 2018. Exploring the influence of SiO2 and TiO2 nanoparticles on the mechanical properties of concrete, Constr. Build. Mater., 175, 277-285.
  • SANCHEZ, F., SOBOLEV, C., 2010. Nanotechnology in concrete: A review, Constr. Build. Mat., 24, 2060–2071.
  • SELIM, F.A., AMIN, M.S., RAMADAN, M., HAZEM, M.M., 2020. Effect of elevated temperature and cooling regimes on the compressive strength, microstructure and radiation attenuation of fly ash-cement composites modified with miscellaneous nanoparticles, Constr. Build. Mater., 258, 119648.
  • SENFF, L., HOTZA, D., LUCAS, S., FERREIRA, V.M., LABRINCHA, J.A., 2012. Effect of nano-SiO2 and nano-TiO2addition on the rheological behavior and the hardened properties of cement mortars, Mater. Sci. Eng., 532, 354-361.
  • SOBOLEV, K., 2016. Modern developments related to nanotechnology and nanoengineering of concrete, Front. Struct. Civ. Eng., 10(2), 131–141.
  • SONG, X., JIANG, N., LI, Y., XU, D., QIU, G., 2008. Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension, Mater. Chem. Phys., 110, 128-135.
  • ŚLOSARCZYK A., KWIECIŃSKA, A., PEŁSZYK, E., 2017. Influence of selected metal oxides in micro and nanoscale on the mechanical and physical properties of the cement mortars. Procedia Eng., 172, 1031-1038.
  • XAVIER, J.R., 2020. Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel, Mater. Sci. Eng. B, 260, 114639.
  • ZDARTA, J., SAŁEK, K., KOŁODZIEJCZAK-RADZIMSKA, A., SIWIŃSKA-STEFAŃSKA, K., SZWARC-RZEPKA, K., NORMAN, M., KLAPISZEWSKI, Ł., BARTCZAK, P., KACZOREK, E., JESIONOWSKI, T., 2015. Immobilization of Amano Lipase A onto Stober silica surface: process characterization and kinetic studies, Open Chem.,13, 138-148.
  • ZHAO, M., LI, N., ZHENG, L., LI, G., YU, L., 2008. Synthesis of well-dispersed NiO nanoparticles with a room temperature ionic liquid, J. Dispers. Sci. Technol., 29, 1103-1105.
  • ZHU, W., BARTOS, P., PORRO, A., 2004. Application of nanotechnology in construction. Summary of a state-of-the-art report. RILEM TC 197-NCM. Mater. Struct., 37, 649–658.
  • ZHUANG, C., CHEN, Y., 2019. The effect of nano-SiO2 on concrete properties: a review. Nanotechnol.Rev., 8, 562-572
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57dc506c-d40b-4114-a383-37fb297c5aa8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.