PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and numerical analysis of a highly sensitive ultrasonic acoustic sensor based on π-phase-shifted fiber Bragg grating and fiber Mach-Zehnder interferometer interrogation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A π-phase-shifted fiber Bragg grating (π-FBG) shows high sensitivity to the ultrasonic (US) wave as compared to the conventional FBG due to the strong slow-light phenomenon at the resonance peak. However, its sensitivity is limited by the interrogation schemes. A combination of π-FBG and unbalanced fiber Mach-Zehnder interferometer (F-MZI) are theoretically analyzed and optimized for the highly sensitive acoustic sensor. The coupled-mode theory (CMT) and transfer matrix method (TMM) are used to establish the numerical modelling of π-FBG. For the optimized grating parameters of π-FBG, the proposed sensing system shows the high strain sensitivity of 1.2x108/ε, the highest dynamic strain resolution of 4.1fε/√Hz, and the highest wavelength shift resolution of 4.9x10-9 pm. Further, the proposed sensing system strongly supports both time and wavelength division multiplexing techniques. Therefore, the proposed sensing system shows extreme importance in single as well as quasi-distributed US acoustic wave sensing networks.
Rocznik
Strony
289--300
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., wzory
Twórcy
  • Indian Institute of Technology Guwahati, Department of Electronics and Electrical Engineering, Guwahati, India
  • Indian Institute of Technology Guwahati, Department of Electronics and Electrical Engineering, Guwahati, India
  • Indian Institute of Technology Guwahati, Department of Physics, Guwahati, India
autor
  • Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Electronic Systems, Nowowiejska 15/19, 00-665 Warsaw, Poland
  • National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland
Bibliografia
  • [1] Wild, G., Hinckley, S. (2008). Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art. IEEE Sensors Journal, 8(7), 1184-1193.
  • [2] Teixeira, J.G.V., Leite, I.T., Silva, S., Frazao, O. (2014). Advanced Fiber-Optic Acoustic Sensors. Photonic Sensors, 4(3), 198-208.
  • [3] Zhang, C., Bond, L.J. (2017). Performance Evaluation of the Fiber Bragg Grating (FBG) Sensing Device and Comparison with Piezoelectric Sensors for AE Detection. AIP Conference Proceedings, 1806(1).
  • [4] Wild, G., Hinckley, S. (2010). Optical Fibre Bragg Gratings for Acoustic Sensors. Proceedings of 20th International Congress on Acoustics, ICA 2010, 23-27.
  • [5] Wee, J. Hackney, D., Bradford, P., Peters, K. (2017). Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing. Applied Optics, 56(25), 7262-7268.
  • [6] Zhao, Y., Zhu, Y., Yuan, M., Wang, J., Zhu, S. (2016). A Laser-Based Fiber Bragg Grating Ultrasonic Sensing System for Structural Health Monitoring. IEEE Photonics Technology Letters, 28(22), 2573-2576.
  • [7] Vidakovic, M., McCague, C., Armakolas, I., Sun, T., Carlton, J.S., Grattan, K.T.V. (2016). Fibre Bragg Grating-Based Cascaded Acoustic Sensors for Potential Marine Structural Condition Monitoring. Journal of Lightwave Technology, 34(19), 4473-4478.
  • [8] Davis, C., Rosalie, C., Norman, P., Rajic, N., Habel, J., Bernier, M. (2018). Remote Sensing of Lamb Waves Using Optical Fibres-An Investigation of Modal Composition. Journal of Lightwave Technology, 36(14), 2820-2826.
  • [9] Xia, M., Jiang, M., Sui, Q., Jia, L. (2015). Theoretical and experimental analysis of interaction from acoustic emission on fiber Bragg grating. Optik, 126(11-12), 1150-1155.
  • [10] Wescley, A.L., Mateus, B.R.C., Taiane, A.M.G.F., Claudia, B.M., Ricardo, M.R. (2018). Low-frequency detection of acoustic signals using fiber as an ultrasonic guide with a distant in-fiber Bragg grating. Microwave and Optical Technology Letters, 60(4), 813-817.
  • [11] Liu, G., Han, M. (2019). Multiplexing fiber-optic ultrasound sensors using laser intensity modulation. Optics Letters, 44(4), 751-754.
  • [12] Minardo, A., Cultrasoundano, A., Bernini, R., Zeni, L., Giordano, M. (2005). Response of fiber Bragg gratings to longitudinal ultrasonic waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(2), 304-312.
  • [13] Yu, Z., Jiang, Q., Zhang, H., Wang, J. (2016). Theoretical and Experimental Investigation of Fiber Bragg Gratings with Different Lengths for Ultrasonic Detection. Photonic Sensors, 6(2), 187-192.
  • [14] Takeda, N., Okabe, Y., Kuwahara, J., Kojima, S. (2005). Lamb wave sensing using fiber Bragg grating sensors for delamination detection in composite laminates. Proc. SPIE, 5758, 135-144.
  • [15] Liang, S., Tjin, S.C., Lin, B., Sheng, X., Lou, S., Zhang, Y., Wang, X. (2019). Novel Fiber Bragg Grating Sensing Method Based on the Sidelobe Modulation for Ultrasound Detection. Journal of Lightwave Technology, 37(11), 2686-2693.
  • [16] Liu, T., Han, M. (2012). Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection. IEEE Sensors Journal, 12(7), 2368-2373.
  • [17] Rosenthal, A., Razansky, D., Ntziachristos, V. (2011). High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Optics Letters, 36(10), 1833-1835.
  • [18] Dwivedi, K.M., Osuch, T., Trivedi, G. (2019). High Sensitive and Large Dynamic Range Quasi-Distributed Sensing System Based on Slow-Light π-phase-shifted Fiber Bragg Grating. Opto-Electronics Review, 27(3), 233-240.
  • [19] Dwivedi, K. M., Trivedi, G., Osuch, T., Juryca, K., Pidanič, J. (2019). Theoretical Analysis of Slow-light in π-phase-shifted fiber Bragg grating for sensing applications. Proc. of Conference on Microwave Techniques (COMITE), 1-6.
  • [20] Guo, J., Yang, C. (2015). Highly stabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection. IEEE Photonics Technology Letters, 27(8), 848-851.
  • [21] Wu, Q., Okabe, Y. (2012). High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Optics express, 20(27), 28353-28362.
  • [22] Hu, L., Han, M. (2017). Reduction of Laser Frequency Noise and Intensity Noise in Phase-Shifted Fiber Bragg Grating Acoustic-Emission Sensor System. IEEE Sensors Journal, 17(15), 4820-4825.
  • [23] Wu, Q., Okabe, Y. (2012). Ultrasonic sensor employing two cascaded phase-shifted fiber Bragg gratings suitable for multiplexing. Optics Letters, 37(16), 3336-3338.
  • [24] Weis, R.S., Kersey, A.D., Berkoff, T.A. (1994). A Four-Element Fiber Grating Sensor Array with Phase-Sensitive Detection. IEEE Photonics Technology Letters, 6(12), 1469-1472.
  • [25] Koo, K.P., Kersey, A.D. (1995). Bragg Grating-Based Laser Sensors Systems with Interferometric Interrogation and Wavelength Division Multiplexing. Journal of Lightwave Technology, 13(7), 1243-1249.
  • [26] Srivastava, D., Tiwari, U., Das, B. (2018). Interferometric interrogation of π-phase shifted fiber Bragg grating sensors. Optics Communications, 410, 88-93.
  • [27] Yoshino T., Sano, Y., Ota, D., Fujita, K., Ikui, T. (2016). Fiber-Bragg-Grating Based Single Axial Mode Fabry-Perot Interferometer and Its Strain and Acceleration Sensing Applications. Journal of Lightwave Technology, 34(9), 2240-2250.
  • [28] Chandra, V., Tiwari, U., Das, B. (2016). Elimination of Light Intensity Noise Using Dual-Channel Scheme for Fiber MZI-Based FBG Sensor Interrogation. IEEE Sensors Journal, 16(8), 2431-2436.
  • [29] Erdogan, T. (1997). Fiber Grating Spectra. Journal of Lightwave Technology, 15(8), 1277-1294.
  • [30] Kersey, A.D., Davis M.A., Patrick H.J., LeBlanc M., Koo K.P., Askins C.G., Putnam M.A., and Friebele E.J. (1997). Fiber Grating Sensors. Journal of Lightwave Technology, 15(8), 1442-1463.
  • [31] Dwivedi, K.M., Trivedi, G., Khijwania, S. (2018). Theoretical Analysis of Fiber Bragg Grating Employing Novel Apodization Profile. Proc. of Photonics, Photonics 2018, 1-2.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57cdaf3b-6c6a-4743-8dc9-ca048c0a90e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.