Identyfikatory
Warianty tytułu
Pyrolysis of biomass as a source of energy
Języki publikacji
Abstrakty
The use of fossil fuels for energy purposes results in the emission of large amounts of carbon dioxide into the atmosphere, which in turn contributes to global warming, which is one of the civilization threats to the environment, and thus to modern civilization. The use of waste of plant origin to obtain energy reduces the amount of greenhouse gas (carbon dioxide) in the atmosphere, which results from the fact that plants take CO2 in the process of photosynthesis. Plants are a carbon reservoir, which in turn allows the use of biomass to obtain biofuels. In addition, the use of waste to obtain energy, solves the problem of storage, which is particularly problematic in the case of tires and plastics, which pose a potential threat to the natural environment. The article describes the composition of waste used for thermal processes and explains why waste is a good source of energy. In addition, it presents the division of thermal processes into three types: combustion, gasification and pyrolysis. In the further part of the article, the division of pyrolysis can be found due to its speed and related differences in the content of individual products and the division of this type of thermal processes, due to the type of reactors used. In addition, the article presents the conditions for conducting thermal processes and their impact on the content of solid, gaseous and liquid products. The work presents the construction of reactors, the principle of their operation, as well as the advantages and disadvantages resulting from their use. In the further part of the article, microalgae are described as an efficient source of fuel in combination with other widely used products of plant origin. In the last part of this work, the composition of products obtained after pyrolysis of waste of various origins was compared.
Wydawca
Czasopismo
Rocznik
Tom
Strony
127--146
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Technologii i Inżynierii Chemicznej, Instytut Technologii Chemicznej Organicznej, ul. Pułaskiego 10, 70-322 Szczecin
autor
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Technologii i Inżynierii Chemicznej, Instytut Technologii Chemicznej Organicznej, ul. Pułaskiego 10, 70-322 Szczecin
Bibliografia
- [1] R.Z. Vigouroux, Pyrolysis of biomass, Stockholm 2001.
- [2] W. Pudlik, Termiczna Przeróbka odpadów Podstawy teoretyczne, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2015.
- [3] J. Nadziakiewicz, K. Wacławiak, S. Stelmach, Procesy termiczne utylizacji odpadów, Wydawnictwo Politechniki Śląskiej, Gliwice 2012.
- [4] J. Czarnocka, The Archives of Automotive Engineering–Archiwum Motoryzacji, 2015, 67, 141.
- [5] Ch.U. Pittman, P.H. Steele, Energy & Fuels, 2006, 20, 848.
- [6] D. Meier, H. Klaubert, S. Scholl, Sposób do ablacyjnej pirolizy biomasy, zastosowanie sposobu do ablacyjnej pirolizy, Patent WO04/076591 2004.
- [7] Y. Prins, Catalytic fast pyrolysis of biomass. [online], IEA Bioenergy, [dostęp: 2017-03-01]. Dostępny w internecie: http://task34.ieabioenergy.com
- [8] P. Kaushal, J. Abedi, J. Ind. Eng. Chem., 2010, 16, 748.
- [9] J. Sokołowski, M. Marczewski, G. Rokicki, Recykling termiczno-katalityczny poliolefin i polistyrenu. [online], [dostęp: 2006-01-17]. Dostępny w internecie: https://bit.ly/2H9SnT1
- [10] D.M. Charles, U. Pittman, P.H. Steel, Energy & Fuels, 2006, 20, 848.
- [11] M. Ryms, K. Januszewicz, W.M. Lewandowski, E. Klugmann-Radziemska, Ecol. Chem. Eng., 2013, 20, 93.
- [12] C. Roy, A. Chaala, H. Darmstadt, J. Anal. Appl. Pyrolysis, 1999, 51, 201.
- [13] A.V. Bridgwater, D. Meier, D. Radlein, Org. Geochem., 1999, 30, 1479.
- [14] A.V. Bridgwater, G.V. Peacocke, Renew. Sust. Rev., 2000, 4, 1.
- [15] H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zeng, Fuel, 2007, 86, 1781.
- [16] B. Chen, Z. Chen, Chemosphere, 2009, 76, 127.
- [17] L. Aguiar, F. Marquez-Montesinos, A. Gonzalo, J.L. Sanchez, J. Arauzo, J. Anal.Appl. Pyrolysis, 2008, 83, 124.
- [18] R. Miranda, D. Bustos-Martinez, C. Sosa Blanco, M.H. Gutierrez Villarreal, M.E. Rodriguez Cantu, J. Anal. Appl. Pyrolysis, 2009, 86, 245.
- [19] M.Wądrzyk, J. Jakóbiec, Acta Acrophysica, 2011, 17, 405.
- [20] Y. Chisti, Biotechnol. Adv., 2007, 24, 294.
- [21] G. Lopez, M. Olazar, R. Aguado, J. Bilbao, Fuel, 2010, 89, 1946.
- [22] W. Kaminsky, C. Mennerich, Z. Zhang, J. Anal. Appl. Pyrolysis, 2009, 85, 334.
- [23] P.T. Williams, Waste Management, 2013, 33, 1714.
- [24] P.T. Williams, A.J. Brindle, Fuel, 2002, 81, 2425.
- [25] M. Pakdel, D.M. Pantea, C. Roy, J. Anal. Appl. Pyrolysis, 2001, 57, 91.
- [26] W. Kaminsky, I.J.N. Zorriqueta, J. Anal. Appl. Pyrolysis, 2007, 79, 368.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57c8d0b4-d4c7-4da7-9183-28a40d4780e8