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1. Introduction

The aim of this work is a comparative study of three popular 
optimization modeling languages: AMPL, Pyomo and JuMP 
and their capabilities to solve a flood control problem. In 
our previous paper [2] the structures used, the available ele-
ments and the methods of their construction have already been 
described in detail. Even though the models for flood control 
problem are longer than those for the shortest path problem 
in the graph [2], there is not much new to it. Most of a model 
in every language is actually a large number of parameters, 
constraints and relationships between them, that occur in the 
mathematical expressions. Therefore, in the descriptions of 
individual implementations, first of all, new things will be 
discussed, concerning, i.a., loading data from multiple files 
into one model.

2. Flood wave control

Optimization of releases from retention reservoirs during flo-
ods is quite an important issue for water management in many 
countries. The nonlinear model described in this chapter was 
developed in [3–5, 1]. The considered river system is presen-
ted in Fig. 1.

It is a system with one retention reservoir, two sections of 
the main river and a side inflow. Three characteristic points 
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are marked with wavelets: the spot just below the reservoir, the 
end of the first section and the end of the second section. In 
these places a flood wave culmination will be calculated. Our 
goal will be the minimization of flood damages approximated by 
the sum of the wave culminations  in these points. A control 
is calculated for the time horizon of T stages. The data given 
at the input regarding the tank inflow, side inflow, distributed 
side inflow on the first and the second section (about 10% of 
the main inflows), are denoted successively as: d, db, q1 and q2. 
An additional condition is that at the end of the simulation 
the retention reservoir should be completely filled. To solve the 
problem we will apply the first approach mentioned in [6], where 
system equations are discretized a’priori with respect to time. 
The mathematical model is as follows [5]:
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Fig. 1. A single reservoir river system
Rys. 1. System rzeczny z jednym zbiornikiem
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 w(t + 1) = w(t) + t · (d(t) − u(t)),  t = 0, ..., T − 1  (4)

 w(0) = w0  (5)

 w(T) = wmax  (6)

 wmin ≤ w(t) ≤ wmax, t = 0, ..., T − 1  (7)

 umin ≤ u(t) ≤ umax(w(t)) = a + b · w(t), t = 0, ..., T − 1  (8)

  (9)

    

  (10)

  (11)

 
 (12)

  (13)

  (14)

  (15)

In the above model a and b are coefficients describing the 
characteristics of the reservoir. The p vector contains weighting 
coefficients for peaks. A release (trajectory) from the reservoir 
is denoted as u, a retention of the reservoir as w, and flows as 
Q. The maximum value of the release is directly related to the 
construction of the retention reservoir, so this value depends on 
the level of its current storage umax(w(t)).

An important element of the above model is the flood wave 
transformation function in the j-th section of the river (10). 
This function has been derived from Saint-Venant PDE, discret-
ized in space into E pieces for every section and the first-order 
Runge-Kutta method with the integration step t [5, 3]. Inputs 
and outputs for the j-th section of the river are denoted as  and  respectively. The t coefficient is given in seconds, and 
its value depends on the frequency with which we will integrate 
(i.e. in how many minutes next values of the reservoir storage 
and water levels in the river will be calculated). Variables with 
the argument 0 mean the initial values.

2.1. AMPL
The implementation of this problem in AMPL is presented 
in Listing 1.

At the beginning, we declare the standard and indexed para-
meters necessary for the model. For some of them, however, 
we also assign appropriate values. For tau, this is the value of 
dividing 3600 (the full hour in seconds) by the iperh parame-
ter, which, as we can see, has not yet been assigned a value. 
However, we do not have to worry about this, because the 
appropriate value will be assigned after reading the data from 
a file and running the solve command. The situation is similar 
for the parameters T and hour. Additionally, we calculate the 
values for this parameter using the ceil function, which rounds 
the result of the given expression up to a whole integer. For this 
purpose, instead of specifying only the index range 1..T, as in 
the case of declaring other visible parameters, we provide the 
full index expression with an iterator that we use to generate 
the next values. Successively, we declare a few more necessary 
parameters, including those related to tributaries. Loading data 
for them will be discussed at the end of this section.

When declaring variables, we can give them a lower or upper 
bound or both. In the last case, we can write both constraints 
in the same line after comma (it does not matter whether we 

Listing 1. Flood control problem implementation in AMPL
Listing 1. Implementacja zadania sterowania falą powodziową w AMPLu

give first the lower or the upper one), as we can see in the case 
of the w variable. We also declare the umax variable (the maxi-
mum value of the release from the reservoir at a given moment 
in time) and use the equality operator to give an expression 
describing the characteristics of the reservoir to which this vari-
able will be equivalent (this is a so-called defined variable in 
AMPL, which is not a decision variable itself, but a kind of 
a macro definition). Thanks to this, we can use this variable 
instead of the entire expression in the constraint on the maxi-
mum release from the reservoir (in both cases the model passed 
to a solver will be identical and it will return the same result 
after the same number of iterations). In this model, such a vari-
able is used only in one constraint, but in models where it is 
used many times, it would definitely affect the readability of 
the code. Finally, we declare the remaining indexed variables 
Qwe, Qwy and Qcul.

There are no new things in the definitions of the objective 
function and constraints as compared to the models discussed 
in [2]. We create them in a standard way, using the structures 
described in [2], in accordance with the mathematical model and 
the description of changes made at the beginning of this article.

The only thing left is to load the data and run the solve 
command. Data delivery to the model will consist of two parts: 
the first is to load most of the parameters from the .dat file 
using the data ’name.dat’; command and the second, to load 
the data for the d, db, q1, and q2. The data for each of these 
four parameters is in a separate text file. Successive values are 
separated by spaces, ten values per line (for the reader’s conve-
nience). Successive values are written from left to right and then 
down. To read this data, we use the read function:

Listing 2. The function read in AMPL
Listing 2. Funkcja read w języku AMPL
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The syntax is simple: we give the keyword, then the index 
expression, the variable into which we load (along with the index), 
operator < and the name of the file being read (or the full path, 
which we must then put in quotation marks). We put these calls 
under the data ’name.dat’; command. The number of spaces in 
the file is irrelevant, and the values are read exactly in the order 
previously described. Interestingly, putting the calls to the read 
function in the .dat file worked fine. This is in a sense a ”trick”, 
as there is no description of such a method in the AMPL book. 
Nevertheless, it allows you to put things related to loading data 
in one place, and we only load a single .dat file to solve the model.

2.2. Pyomo
The implementation of this problem in Pyomo is shown in 
Listing 3.

Traditionally, at the beginning we import the necessary 
Pyomo libraries. As in the case of the graph model from paper 
[2], this model will be abstract (AbstractModel() method), 
because we do not need specific data when creating it. Next, 
we add to the model a few auxiliary files, that will be used for 
indexing (remembering, that some files are created only after 
declaring the parameters that are used to create these sets), 
and the necessary parameters. For some of them we need to set 
values returned by expressions depending on other parameters, 
that is for m.tau, m.T and m.hour. We do this by providing the 
Param() method with the initialize argument, which takes 
the name of the method generating the appropriate expression. 
We can also give the expression itself (in parentheses), which 
will shorten a bit the code. However, we can only do this for 
simple parameters (without indices). Due to the fact that most 
of the constraints and parameters are indexed, for some consis-
tency, instead of the direct expression a method is used here. 
The parameters will be built and set to the appropriate values 
when instantiated using the m.create_instance() method. For 
indexed hour we simply add the set in Param() and include the 
variable for the index number in the hour_init method. The 
values themselves are generated using the Python-built ceil 
method, which rounds the result of the expression in paren-
theses up to an integer number. We also declare the missing 
parameters, including those concerning inflows, for which the 
data loading method will be discussed at the end of the section.

When declaring variables, we can limit them by passing the 
bounds argument in the Var() method, where in parentheses 
we give the lower and upper bounds (in this order) separated by 
a comma. For example, if we want to limit a variable only from 
the bottom, we pass the keyword None after comma. Contrary 
to AMPL, there is no analogous structure for umax (maximum 
value of release from the reservoir at a given moment in time), 
so the expression describing the characteristics of the reservoir 
will be used directly in the limitation of the maximum release for 
a given reservoir capacity (constraint mu.u_max). Finally, we add 
the remaining Qwe, Qwy and Qcul indexed variables to the model.

The objective function and constraints contain the constructs 
already discussed in [2] and are created in a similar way. How-
ever, there was a problem with the m.w_final constraint, and 
more specifically with the m.w_final_rule method (full filling 
at the end). The m.w variable has an upper bound defined with 
bounds as m.wmax, which is also a condition for m.w_final. As 
a result, the solver was not able to solve the passed model then 
(it looked as if it was ”stuck” in a certain area of local minima, 
from which it could not ”jump”). Fortunately, the solution to the 
problem turned out to be quick and easy. As we can see in the 
code, it was enough to subtract from m.wmax a relatively small 
number 0.001. Thanks to this, the solver was able to find and 
return the correct result. However, giving a too small number 
did not work. For example, for 10−6, the solver needed about 
10 times more iterations and the resulting solution left a lot to 
be desired (huge amplitudes of dumps in consecutive moments 

Listing 3. Flood control problem implementation in Pyomo
Listing 3. Implementacja zadania sterowania falą powodziową w Pyomo

of time). Instead of subtracting here 0.001, we can also add 
this value to the upper limit for the reservoir capacity (in the 
bounds argument when declaring the m.w variable). However, 
the solver then needs a bit more iterations to find the result, 
and it is slightly worse.
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Finally, you have to load the data, create an instance and 
solve the model. For reading data from multiple files, Pyomo 
offers the DataPortal() object used in the following way:

We start with importing the appropriate packages. Due to 
the fact, that in JuMP there are no typical constructs for 
parameters and sets, which are also used in indexing, we have 
to load the data for the model at the very beginning (similarly 
to the graph problem model in [2]). It was also necessary to 
come up with a clear syntax for the input file with parame-
ters data, which, when loaded into the program, will be easy 
to parse and prepare. Ultimately, the data in this file looks 
like this:

N: 300

k: 13700 5000

n: 0.756 0.915

p: 0.0146 0.0119 0.1149

...

Listing 6. A fragment of the input file with wave data
Listing 6. Fragment pliku wejściowego z danymi fali

In each line, we start with the name of the parameter, fol-
lowed by a colon, and then the value or values separated by 
spaces. This gives us a readable input file and is easy to parse. 
Thanks to the extensive constructs and methods in native 
Julia, this can be done in a short way as shown in the model 
code above (lines 3-6). We create the dictionary variable p_vals 
(using Dict()). We then provide an expression for the loop. 
The map() method maps the elements from the array given in 
the second argument using the expression given in the first. 
Let’s start with the second argument passed to this method. 
The readlines() function reads lines from a given text file 
and creates an array of strings from them. In the first map() 
argument we pass an anonymous function of the form:

(parameter_name1, parameter_name2, ...)  

→ (function body)

In our case, there is only one parameter, so we can omit 
the parentheses. The name of the parameter is irrelevant, it is 
essential that we use it in the function body. Here, the param-
eter is a text line that is separated with the split() method 
in place of the colon (the colon itself is lost). The result is 
a pair of (name, string with values). After the mapping is 
done, we have a list of pairs that serve as the iterator for the 
for loop. Inside, we create the appropriate elements in the 
p_vals variable. On the left side of the assignment, in square 
brackets, we give the key by reading it from the first position 
of the i iterator, which we additionally place in the strip() 
method, removing spaces from both ends of the string passed 
to it. On the right side of the assignment, starting from the 
very center, we read the second element (a text string with 
numerical values) from the iterator. We remove white spaces 
from both ends, and then use split to separate the values 
from each other, getting an array. Finally, we use the parse.()  
method to cast a string value to a numeric one (which is 
detected automatically because the resulting strings contain 
only numbers). Note here the characteristic dot after the 
parse method name, before the brackets. It means the exe-
cution of the method in a vector way, i.e., it will be called for 
each element from the array that we passed as an argument 
(the created array with numbers). It is a very compact solu-
tion, owing to which we do not need to use an additional loop. 
Finally, the p_vals variable contains keys that are variable 
names and values that are lists of numbers.

Then we create the parameters by reading the appropriate 
values from our dictionary through a key. If it is a simple, 
non-array parameter, then we additionally extract it from 
a one-element list, adding ”1” in square brackets (i.e., sim-
ply the first index of the array). We calculate the tau and T 
parameters using standard mathematical operations. For hour 

Listing 4. DataPortal() object in Pyomo
Listing 4. Obiekt DataPortal() w Pyomo

Listing 5. Flood control problem implementation in JuMP
Listing 5. Implementacja zadania sterowania falą powodziową w JuMP

After creating the mentioned object, we call the load() method 
on it as many times as many files we have to load. In the filename 
argument we provide the name of the loaded file. If it is a .dat file 
(the construction for the reminder is the same as for the AMPL 
counterpart), then additionally in the model argument we provide 
(as you can guess) the object of our model. In the case of files with 
data on inflows to the reservoir, etc., we pass the param argument 
instead, in which we pass a specific parameter from the model. 
These files have a .tab extension and have their own syntax. In this 
case, the first column contains the indices 1 to N, while the second 
column contains specific values. Additionally, in the first line there 
are one-word names of these columns (which are only informative 
for the person checking the content of the file). Finally, the entire 
data object is passed to the create_instance() method, and the 
created instance is passed to the solve method of the solver object.

2.3. JuMP
The implementation of this problem in JuMP  is shown in Listing 5.
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we generate the values in the array using the ceil method 
and the expression for. The ceil function itself, that rounds 
the result up to the whole number, in the first argument takes 
the type (we give Int32 so that the number is an integer; by 
default it returns a floating point with a zero fraction), and in 
the second a mathematical expression or a fractional number.

The parameters for d, db, q1 and q2 tributaries can be read 
from separate text files using the readdlm() method (simi-
larly to the graph problem [2]). Successive values are separated 
by spaces, ten values per line (for the reader’s convenience). 
They are written from left to right and then down. We must 
remember that after reading the data will be in the matrix. 
We can ”flatten” it down to one dimension using the vec() 
method, which reads the matrix column from top to bottom. 
This means, that we need to transpose the matrices. In the 
above code, behind the parenthesis ending the readdlm() 
method, we can see a characteristic apostrophe, by which we 
are just transposing the matrix.

We create a model object as standard, taking into account 
the solver passed in the constructor argument of the Model() 
method. As in the previous models, we declare the variables 
and constraints according to the previously described struc-
tures. As with Pyomo, there was a problem with the final 
reservoir filling constraint w[T] == wmax. It turned out that 
the solution to the problem is identical, when we just sub-
tract (as we can see in the code) a relatively small number 
0.001. Likewise, we can instead add this value in the upper 
bound on the reservoir capacity, with the same consequences 
as in Pyomo. It is quite an interesting situation that the same 
behavior occurred in both these languages, but it did not 
occur in AMPL.

Another limitation that draws attention is the wave trans-
formation on river sections (flow_transformation). JuMP 
has a @NLconstraint method for nonlinear constraints. Using 
it is just the same as using normal constraints, the only point 
is that it is necessary because JuMP does not allow us to write 
a nonlinear constraint using the @constraint() method. This 
in some way increases the readability of the model, because 
we can immediately see what nonlinear constraints are, with-
out analyzing them. There is also a similar method for the 
objective function (NLobjective()), but in this model the 
function is linear.

Finally, all that’s left to do is to call solve(m) and to read 
the results.

3. Tests

We solved a flood wave control problem using data concerning 
Dunajec river with Rożnów reservoir and Biała Tarnowska side 
inflow. The following values of parameters were used:
N = 300 h (time horizon),

iperh = 4 (#steps in 1h),
k = [13700, 5000],  n = [0.756, 0.915],
p = [0.0146, 0.0119, 0.1149],
a = 1200,  b = 15,
umin = 40 m3  w_0 = 84.9 mln m3,
wmin = 40.3 mln m3,  wmax = 171.2 mln m3,
Q1_0 = 100 m3,  E = 10.

The values of inflows d(.), db(.), q1(.), q2(.) are given in tables 
in [5]. The resulting number of decision variables was 50001. In 
all implementations we used Knitro solver. In every case after 
918 iterations and about 400 s on a PC with Intel Core i7-2600 
3.40 GHz processor we got the same results. They are presented 
in Figs. 2, 3. The obtained curves are very similar to those pre-
sented in [5], despite the coding effort was much smaller, because 

Fig. 2. Inflows, the optimal release from the reservoir and the outflow 
from the system
Rys. 2. Dopływy, optymalny zrzut oraz przepływ na wyjściu systemu

Fig. 3. Reservoir storage trajectory for the optimal release
Rys. 3. Trajektoria napełnienia zbiornika dla zrzutu optymalnego

of using high level modeling languages and a given, efficient 
commercial nonlinear solver.

4. Conclusions

The AMPL, Pyomo and JuMP environments presented in this 
paper proved to be effective tools for discrete-time optimal 
control problems modeling. AMPL, as a language dedicated to 
optimization modeling, allowed for the easiest and most conve-
nient, resembling mathematical formulation, without program-
ming overheads, implementation of models. It also provided 
the shortest code of all the environments discussed here. In 
terms of the number of characters and lines we need to write, 
undoubtedly the implementation in Pyomo is the worst. JuMP 
is between the two. Despite the lack of constructs for parame-
ters and sets in JuMP and Pyomo one can successfully use the 
standard functionalities offered by Julia and Python languages. 
The creation of mathematical expressions was quite comforta-
ble and intuitive in these environments. JuMP offers built-in 
operations on vectors and arrays, which are missing in AMPL. 
Moreover, both Pyomo and JuMP offer all constructs of their 
native languages what is most important, when optimization 
is only a part of a bigger application.
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Streszczenie: Celem pracy jest badanie porównawcze trzech języków (środowisk) modelowania 
optymalizacyjnego: AMPL, Pyomo i JuMP. Porównanie jest oparte na trzech implementacjach zadania 
optymalnego sterowania falą powodziową z czasem dyskretnym, sformułowanego jako zadanie 
programowania nieliniowego. Przedstawione i omówione zostaną kody poszczególnych modeli oraz 
różnice między nimi. Uwzględnione zostaną różne aspekty, m.in. prostota i intuicyjność implementacji.  

Słowa kluczowe: optymalizacja, języki modelowania, programowanie, sterowanie falą powodziową, programowanie nieliniowe, sterowanie optymalne 

Studium porównawcze języków modelowania optymalizacyjnego 
AMPL, Pyomo i JuMP na przykładzie zadania sterowania falą 
powodziową
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