PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical and experimental investigation on precision forming of ribbed tube by cold drawing process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ribbed tube is a new type of nuclear fuel cladding tube. The integrated precision forming of the rib is one of the technical bottlenecks. The cold drawing process of ribbed tube was investigated by combining finite element (FE) simulation and experiment in this study, and the results show that the insufficient rib filling and useless rib groove defects are the main problems. The insufficient radial metal flow on the outer surface of the tube leads to insufficient rib filling. The rib groove defects are caused by the relatively adequate radial and circumferential metal flow on the inner surface of the tube. Further, the effect of process parameters on rib height (RH), rib groove depth (GD) and drawing force was investigated by single-pass drawing process. The RH, GD and drawing force decrease with the increase of die angle (α) and increase with the increase of the initial tube outer diameter (Di) and die groove angle (β). Increasing the initial wall thickness (Wi) can markedly reduce the GD. On these basis, a modified die with arc surface was proposed to improve the rib filling by increasing the radial metal flow. And a modified billet with special-section is used as the preform to reduce the rib groove defects. Further, the forming experiment of ribbed tube is carried out by multi-pass drawing with the above improved methods. The experimental results show that the rib filling can be significantly improved, and the rib groove can be eliminated, which verifies the effectiveness of the proposed methods.
Rocznik
Strony
art. no. e135
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
  • Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Beijing 100083, China
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
  • School of Mechanical Engineering, University of Science and Technology Beijing, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
Bibliografia
  • 1. Bayoumi LS. Cold drawing of regular polygonal tubular sections from round tubes. Int J Mech Sci. 2001;43:2541-53. https://doi.org/10.1016/S0020-7403(01)00056-X.
  • 2. Aiello LL, Charnley JE, Mees JA, et al. Control rod absorber section fabrication by square tube configuration and dual laser welding process: US, US4925620 A[P]. 1990.
  • 3. Zhang Y, Faghri A. Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. Int J Heat Mass Transf. 1996;39:3165-73. https://doi.org/10.1016/0017-9310(95)00402-5.
  • 4. Tang Y, Chi Y, Chen JC, et al. Experimental study of oil-filled high-speed spin forming micro-groove fin-inside tubes. Int J Mach Tool Manuf. 2007;47:1059-68. https://doi.org/10.1016/j.ijmachtools.2006.10.001.
  • 5. Tangsri T, Norasethasopon S, Yoshida K. Fabrication of small size inner spiral ribbed copper tube by fluid mandrel drawing. Int J Adv Manuf Technol. 2014;70:1923-30. https://doi.org/10.1007/s00170-013-5328-8.
  • 6. Yoshida K, Furuya H. Mandrel drawing and plug drawing of shape-memory-alloy fine tubes used in catheters and stents. J Mater Process Tech. 2004;153-154:145–50. https://doi.org/10.1016/j.jmatprotec.2004.04.182.
  • 7. Farahani ND, Parvizi A, Barooni A, et al. Optimum curved die profile for tube drawing process with fixed conical plug. Int J Adv Manuf Technol. 2018;97:1-11. https://doi.org/10.1007/s00170-018-1803-6.
  • 8. Beland J, Fafard M, Rahem A, et al. Optimization on the cold drawing process of 6063 aluminium tubes. Appl Math Model. 2011;35(11):5302-13. https://doi.org/10.1016/j.apm.2011.04.025.
  • 9. Farrugia P. Study of cold tube drawing by finite-element modelling. J Mater Process Tech. 1998;80-81:690-4. https://doi.org/10.1016/S0924-0136(98)00127-7.
  • 10. Kim SW, Kwon YN, Lee YS, et al. Design of mandrel in tube drawing process for automotive steering input shaft. J Mater Process Tech. 2007;187:182-6. https://doi.org/10.1016/j.jmatprotec.2006.11.134.
  • 11. Gattmah J, Ozturk F, Orhan S. Experimental and finite element analysis of residual stresses in cold tube drawing process with a fixed mandrel for AISI 1010 steel tube. Int J Adv Manuf Technol. 2017;93:1229-41. https://doi.org/10.1007/s00170-017-0583-8.
  • 12. Moon YH, Lee DH, Van Tyne CJ. Optimal distribution of drawing strains in the two-pass tube drawing process. PI Mech Eng B-J Eng. 2005;219:595-602. https://doi.org/10.1243/095440505X32481.
  • 13. Sawamiphakdi K, Lahoti GD, Gunasekera JS, et al. Development of utility programs for a cold drawing process. J Mater Process Tech. 1998;80:392-7. https://doi.org/10.1016/S0924-0136(98)00118-6.
  • 14. Wang J, Shu G, Zheng B, et al. Investigations on cold-forming effect of cold-drawn duplex stainless steel tubular sections. J Constr Steel Res. 2019;152:81-93. https://doi.org/10.1016/j.jcsr.2018.04.020.
  • 15. Lee SK, Jeong MS, Kim BM, et al. Die shape design of tube drawing process using FE analysis and optimization method. IntJ Adv Manuf Tech. 2013;66:381-92. https://doi.org/10.1007/s00170-012-4332-8.
  • 16. Hosseinzadeh M, Mouziraji MG. An analysis of tube drawing process used to produce squared sections from round tubes through FE simulation and response surface methodology. Int J Adv Manuf Technol. 2016;87:21792194. https://doi.org/10.1007/s00170-016-8532-5.
  • 17. Hatala M, Botko F, Peterka J, et al. Evaluation of strain in cold drawing of tubes with internally shaped surface. Mater Today. 2020;22:287-92. https://doi.org/10.1016/j.matpr.2019.08.119.
  • 18. Qi HY, Zhu HJ. Special-shaped tube drawing forming and conformal optimization of die cavity. Trans Nonferr Met Soc. 2006;16(A02):240-5 (in Chinese).
  • 19. Xu W, Wang K, Wang P, et al. A newly developed plug in the drawing process for achieving the high accuracy of aluminum rectangular tube. Int J Adv Manuf Tech. 2011;57:1-9. https://doi.org/10.1007/s00170-011-3292-8.
  • 20. Chobaut N, Drezet JM, Mischler S, et al. Miniaturized tube fixed plug drawing: determination of the friction coefficients and drawing limit of 316 LVM stainless steel. J Mater Process Technol. 2019;263:396-407. https://doi.org/10.1016/j.jmatprotec.2018.08.037.
  • 21. Liu SQ, Wang BY, Li W. Investigation of cold drawing process of thin-walled ribbed steel tube. J Manuf Process. 2021;70(11):376-88. https://doi.org/10.1016/j.jmapro.2021.08.039.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57bf04be-95ba-489e-bab8-768155b76fc5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.