PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of a Hot-Spot Model to Describe the Influence of Particle Size and Distance on Combustion in a Cloud

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The combustion of particles in a cloud can be very different from single particle combustion. In addition to the size of the particles, the number density of particles or the mean distance between the particles plays an important role. Experiments show that if the distance between the particles in a cloud is large enough, particles burn in a similar manner to single particles. However below a certain distance, particles form a common flame front. In a parametric study, a hot-spot model is used to simulate the two burning regimes and to find the critical parameters for the transition between them. The results are discussed with reference to the combustion of metalized, gelled and solid propellants and dust explosions.
Słowa kluczowe
Rocznik
Strony
69--85
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Fraunhofer Institut für Chemische Technologie ICT, Pfinztal, Germany
autor
  • Fraunhofer Institut für Chemische Technologie ICT, Pfinztal, Germany
autor
  • Fraunhofer Institut für Chemische Technologie ICT, Pfinztal, Germany
Bibliografia
  • [1] Wen D., Nanofuel as a Potential Secondary Energy Carrier, Energy Environ. Sci.,2010, 3, 591-60.
  • [2] Tulis A.J., Sumida W.K., Dillon J., Comeyne W., Heberlein D.C., Submicron Aluminum Particle Size Influence on Detonation of Dispersed Fuel-oxidizer Powders, Arch. Comb., 1998, 18(1-4), 157-164.
  • [3] Pritchard D.K., Literature Review – Explosion Hazards Associated with Nanopowders, HSL/2004/12, Health and Safety Laboratory, Buxton, 2004.
  • [4] Dobashi R., Risk of Dust Explosions of Combustible Nanomaterials, Nanosafe 2008: International Conference on Safe production and use of nanomaterials, Journal of Physics: Conference Series, 2009, 170, 012029.
  • [5] Wu H.-C., Chang R.-C., Hsiao H.-C., Research of Minimum Ignition Energy for Nano Titanium Powder and Nano Iron Powder, Journal of Loss Prevention in the Process Industries, 2009, 22, 21-24.
  • [6] Wu H.-C., Ou H.-J., Peng D.-J., Hsiao H.-C., Gau C.-Y., Shih T.-S., Dust Explosion Characteristics of Agglomerated 35nm and 100nm Aluminum Particles, Hindawi Publishing Corporation, Int. J. Chem. Eng., Article ID 941349, 2010.
  • [7] Dufaud O., Traoré M., Perrin L., Chazelet S., Thomas D., Experimental Investigation and Modelling of Aluminum Dusts Explosions in the 20 L Sphere, J. Loss. Prev. Process Ind., 2010, 23, 226-236.
  • [8] Andrzejak T.A., Shafirovich E., Varma A., On the Mechanisms of Titanium Particle Reactions in O2/N2 and O2/Ar Atmospheres, Propellants Explos. Pyrotech., 2009, 34, 53-58.
  • [9] Meinkohn D., The Effect of Particle Size and Ambient Oxidizer Concentration on Metal Particle Ignition, Combust. Sci. Technol., 2009, 181(4), 1007-1037.
  • [10] Joyce D.M., Combustion Signatures of Various Energetic Metal Powders in a Shock Tube Experiment, Thesis, University of Illinois at Urbana-Champaign, 2011.
  • [11] Marion M., Chauveau C., Gökalp I., Studies on the Ignition and Burning of Levitated Aluminum Particles, Combust. Sci. Technol., 1996, 115, 369-390,.
  • [12] Natan B., Gany A., Ignition and Combustion of Boron Particles in the Flow Field of a Solid Fuel Ramjet, J. Propul. Power, 1991, 7, 37-43.
  • [13] Zhow W., Yetter R.A., Dryer F.L., Rabitz H., Brown R.C., Kolb C.E., Multi-Phase Model for Ignition and Combustion of Boron Particles, Combust. Flame, 1999, 117(1), 227-243.
  • [14] Dirk Meinkohn, The Effect of Particle Size and Ambient Oxidizer Concentration on Metal Particle Ignition, Combust. Sci. Technol., 2009, 181(4), 1007-1037.
  • [15] Umemura A., Ogawa S., Oshima N., Analysis of the Interaction between Two Burning Droplets, Combust. Flame, 1981, 41, 45-55.
  • [16] Marberry M., Ray A.K., Leung K., Effect of Multiple Particle Interactions on Burning Droplets, Combust. Flame, 1984, 57(3), 237-245.
  • [17] Miyasaka K., Law C.K., Combustion of Strongly-Interacting Linear Droplet Arrays,18th Symp. (Int.) Combust., 1981, 283.
  • [18] Xiong T.Y., Law C.K., Miyasaka K., Interactive Vaporization and Combustion of Binary Droplet Systems, 20th Symp. (Int.) Combust., 1985, 1781-1787.
  • [19] Nagata H., Kudo I., Ito K., Nakamura S., Takeshita Y., Interactive Combustion of Two-Dimensionally Arranged Quasi-Droplet Clusters under Microgravity, Combust. Flame, 2002, 129, 392-400.
  • [20] Abramzon B., Sirignano W.A., Droplet Vaporization Model for Spray Combustion Calculations, Int. J. Heat. Mass Transfer, 1989, 32(9), 1605-1618.
  • [21] Kim H.Y., Cho C.P., Chung J.T., Correlation of Burning Rate of the Interacting Liquid Droplets with Internal Circulation, JSME International Journal Series B, 2005, 48(2), 293-299.
  • [22] Chin H.H., Kim H.Y., Croke E.J., Internal Group Combustion of Liquid Droplets, 19th Symp. (Int.) Combust., The Combustion Institute, Pittsburgh, PA, 1983, 971-80.
  • [23] Correa S. M., Sichel M., The Group Combustion of a Spherical Cloud of Monodisperse Fuel Droplets, 19th Symp. (Int.) Combust., The Combustion Institute, Pittsburgh, PA, 1983, 981-91.
  • [24] Law C.K., Surface Reaction Model for Metal Particle Combustion, Combust. Sci.Technol., 1973, 7, 197-212.
  • [25] Eisenreich N., Borne L., Lee R.S., Forbes J.W., Ciezki H.K., Particle Processing and Characterization, ch. 13, in: Energetic Materials (U. Teipel, Ed.), Wiley-VCH, 2005.
  • [26] Ilyin A.P., Proskurovskaya L.T., Two Stage Combustion of Ultradispersed Aluminum Powder in Air, Combust., Explos. Shock Waves (Eng. Transl.), 1990, 26(2), 71-72.
  • [27] Mench M.M., Yeh C.L., Kuo K.K., Propellant Burning Rate Enhancement and Thermal Behavior of Ultra-Fine Aluminum Powders (ALEX), 29th Int. Annu. Conf. ICT , June 30-July 3, 1998, 30(1-15).
  • [28] Bashung B., Grune D., Licht H.H., Samirant M., Combustion Phenomena of a Solid Propellant Based on Aluminum Powder, 5th International Symposium on Special Topics in Chemical Propulsion (5-ISICP), Stresa, Italy, 19-22 June, 2000.
  • [29] Lessard P., Beaupré F., Brousseau P., Burn Rate Studies of Composite Propellants Containing Ultra-Fine Metals, 32nd Int. Annu. Conf. ICT, Karlsruhe, 3-6 July, 2001.
  • [30] Weiser V., Eisenreich N., Kelzenberg S., Einfluß der Größe von Metallpartikeln auf die Anzündung und Verbrennung von Energetischen Materialien, 32nd Int. Annu. Conf. ICT, Karlsruhe, Germany, 2001, July 3 – July 6, 34.1-34-14.
  • [31] Arkhipov V., Bondarchuk S., Vorozhtsov A., Korotkikh A., Kuznetsov V., Ivanov Yu.F., Osmonoliev M.N., Sedoi V.S., Productions of Ultra-Fine Powders and Their Use in High Energetic Compositions, Propellants Explos. Pyrotech., 2003, 28, 319-333.
  • [32] Vorozhtsov A., Arkhipov V., Bondarchuk S., Kuznetsov V., Korotkikh A., Surkov V., Ignition and Combustion of Solid Propellants Containing Ultrafine Aluminum, Proc. Rocket Propulsion: Present and Future, Pozzuoli, Naples, Italy, 16-21 June, 2002, 8-IWCP Book of Abstracts, Politecnico di Milano, SP Lab, Printed in Italy, 2002, 78-79.
  • [33] Simonenko V.N., Zarko V.E., Comparative Studying the Combustion Behavior of Fine Aluminum, 30th Int. Annu. Conf. of ICT, Karlsruhe, June 29 – July 2, 1999, 21(1-14).
  • [34] Miller P.J., Bedford C.D., Davis J.J., Effect of Metal Particle Size on the Detonation Properties of Various Metallized Explosives, 11th Int. Symposium on Detonation Snowmass, Colorado, 30 August – 4 September, 1998.
  • [35] Lefrançois A., LeGallic C., Expertise of Nanometric Aluminum Powder on the Detonation Efficiency of Explosives, 32nd Int. Annu. Conf. ICT, Karlsruhe, Germany, 3-6 July, 2001.
  • [36] Brousseau P., Cliff M.D., The Effect of Ultrafine Aluminium Powder on the Detonation Properties of Various Explosives, 32nd Int. Annu. Conf. ICT, Karlsruhe, Germany, 3-6 July, 2001.
  • [37] Liu Q., Bai C., Jiang L., Dai W., Deflagration-to-Detonation Transition in Nitromethane Mist/Aluminum Dust/Air Mixtures, Combust. Flame, 2010, 157, 106-117.
  • [38] Eisenreich N., Fietzek H., Juez-Lorenzo M., Kolarik V., Koleczko A., Weiser V., On the Mechanism of Low Temperature Oxidation for Aluminium Particles down to the Nano-Scale, Propellants Explos. Pyrotech., 2004, 29, 137-145.
  • [39] Trunov M.A., Schoenitz M., Dreizin E.L., Ignition of Aluminum Powders under Different Experimental Conditions, Propellants Explos. Pyrotech., 2005, 30, 36.
  • [40] Trunov M.A., Umbrajkar S.M., Schoenitz M., Mang J.T., Dreizin E.L., Oxidation and Melting of Aluminum Nanopowders, J. Phys. Chem. B, 2006, 110, 13094- 13099.
  • [41] Schulz O., Eisenreich N., Kelzenberg S., Schuppler H., Neutz J., Kondratenko E., Nonisothermal and Isothermal Kinetics of High Temperature Oxidation of Micrometer Sized Titanium Particles in Air, Thermochim. Acta, 2011, 517, 98-104.
  • [42] Schulz O., Eisenreich N., Kelzenberg S., Fietzek H., Juez-Lorenzo M., Kondratenko E., Oxidation of Nanometer-Sized Titanium Nitride and Micrometer-Sized Titanium Particles with Titanium Nitride Traces up to 1473 K in Air, Particle & Particle Systems Characterization, 2010, 7, 48-58.
  • [43] Langer G., Eisenreich N., Hot Spots in Energetic Materials, Propellants Explos. Pyrotech., 1999, 24, 113-118.
  • [44] Weiser V., Kelzenberg S., Eisenreich N., Influence of Metal Particle Size on the Ignition of Energetic Materials, Propellants Explos. Pyrotech., 2001, 26, 284-289.
  • [45] Eisenreich N., Fischer T.S., Langer G., Kelzenberg S., Weiser V., Burn Rate Models for Gun Propellants, Propellants Explos. Pyrotech., 2002, 27, 142-149.
  • [46] Kelzenberg S., Eisenreich N., Weiser V., New Approach to Ignition and Combustion Phenomena with Hot-Spot-Model, Proc. Theory and Practice of Energetic Materials, Vol.VI, Beijing, China, October 25 – 28, Science Press USA Inc., 2005, 803-809.
  • [47] Kelzenberg S., Eisenreich N., Weiser V., Fast Methods on Modelling of Multidimensional Distributions of Evaporating and Burning Droplets, 34th Int. Annu. Conf. ICT, Karlsruhe, June 24 – 27, 2003.
  • [48] Kelzenberg S., Eisenreich N., Modelling of Combustion of Droplet Cluster, 35th Int. Annu. Conf. ICT, Karlsruhe, June 29 – July 2, P160, 2004.
  • [49] Williams F.A., Combustion Theory, 2nd Edition, Benjamin/Cummings Publishing Company, Inc., 1985
  • [50] Recent Advances in Spray Combustion, (Kuo K.K., Ed.), Vol. I: Spray Atomization and Drop Burning Phenomena, Volume 166 of Progress in Astronautics and Aeronautics, AIAA, 1996.
  • [51] Sirignano W.A., Fluid Dynamics and Transport of Droplets and Sprays, Cambridge University Press, UK, 1999.
  • [52] Spalding D.B., Combustion and Mass Transfer, Pergamon Press, 1979.
  • [53] Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford, UK, 1973.
  • [54] Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T., Numerical Recipes, Cambridge University Press, London, 1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57be2c28-0276-4274-9621-c2869ccd0a5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.