PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PZT Asymmetrical Shape Optimization in Active Vibration Reduction of Triangular Plates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the new 2D asymmetrical PZT (a-PZT) and its effectiveness in the active reduction of triangular plate vibrations. The isosceles right triangular plate with simply supported edges was chosen as the research object. To determine the a-PZT asymmetry and its distribution on the plate, a maximum bending moment criterion for the beam was used. First of all, this criterion points out exact center location of the a-PZT. It was at the point, at which the plate bending moment has reached its maximum value. Next, at this point, it was assumed that the piezoelectric consists of active fibers located radially from the center. Each fiber acted on the plate as a separate actuator. Next, at each direction, the actuator asymmetry was found mathematically by minimizing the amplitude of the vibrations. By connecting the outer edges of individual fibers, the 2D a-PZT was obtained. It was quantitatively confirmed that the effectiveness of the new a-PZT was the best compared with the effectiveness of the standard square and the circular PZTs, adding the same exciting energy to the PZTs.
Rocznik
Strony
425--432
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical and Computer Engineering Fundamentals Rzeszow University of Technology Rzeszow, Poland
  • Department of Electrical and Computer Engineering Fundamentals Rzeszow University of Technology Rzeszow, Poland
Bibliografia
  • 1. Aridogan A., Basdogan I. (2015), A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers, Journal of Intelligent Material Systems and Structures, 26(12): 1455-1476, doi: 10.1177/1045389X15585896.
  • 2. Branski A., Szela S. (2008), Improvement of effectiveness in active triangular plate vibration reduction, Archives of Acoustics, 33(4): 521-530.
  • 3. Branski A., Szela S. (2010), Quasi-optimal PZT distribution in active vibration reduction of the triangular plate with P-F-F boundary conditions, Archives of Control Sciences, 20(2): 209-226, doi: 10.2478/v10170-010-0014-7.
  • 4. Branski A., Kuras R. (2022), Asymmetrical PZT applied to active reduction of asymmetrically vibrating beam – semi-analytical solution, Archives of Acoustics, 47(4): 555-564, doi: 10.24425/aoa.2022.142891.
  • 5. Donoso A., Sigmund O. (2009), Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads, Structural and Multidisciplinary Optimization, 38: 171-183, doi: 10.1007/s00158-008-0273-0.
  • 6. Fuller C.R., Elliot S.J., Nielsen P.A. (1997), Active Control of Vibration, Academic Press, London.
  • 7. Gardonio P., Casagrande D. (2017), Shunted piezoelectric patch vibration absorber on two-dimensional thin structures: Tuning considerations, Journal of Sound and Vibration, 395: 26-47, doi: 10.1016/j.jsv.2017.02.019.
  • 8. Gonçalves J.F., De Leon D.M., Perondi E.A. (2017), Topology optimization of embedded piezoelectric actuators considering control spillover effects, Journal of Sound and Vibration, 388: 20-41, doi: 10.1016/j.jsv.2016.11.001.
  • 9. Gorman D.J. (1983), A highly accurate analytical solution for free vibration analysis of simply supported right triangular plates, Journal of Sound and Vibration, 89(1): 107-118, doi: 10.1016/0022-460X(83)90914-8.
  • 10. Gorman D.J. (1999), Vibration analysis of Plates by the Superposition Method, World Scientific Publishing Co. Pte. Ltd., Singapore.
  • 11. Hansen C.H., Snyder S.D. (1997), Active Control of Noise and Vibration, E & FN SPON, London.
  • 12. Her S.-C., Chen H.-Y. (2020), Deformation of composite laminates induced by surface bonded and embedded piezoelectric actuators, Materials, 13(14): 3201, doi: 10.3390/ma13143201.
  • 13. Kozien M.S., Scisło Ł. (2015), Simulation of control algorithm for active reduction of transversal vibrations of beams by piezoelectric elements based on identification of bending moment, Acta Physica Polonica A, 128(1): A56-A61, doi: 10.12693/APhysPolA.128.A-56.
  • 14. Leissa A.W. (1969), Vibration of Plates, Scientific and Technical Information Division NASA, Washington.
  • 15. Rao S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons Inc., Hoboken, New Jersey.
  • 16. Saliba H.T. (1990), Transverse free vibration of simply supported right triangular thin plates: A highly accurate simplified solution, Journal of Sound and Vibration, 139(2): 289-297, doi: 10.1016/0022-460X(90)90889-8.
  • 17. Saliba H.T. (1996), Free vibration of simply supported general triangular thin plates: An accurate simplified solution, Journal of Sound and Vibration, 196(1): 45-57, doi: 10.1006/jsvi.1996.0466.
  • 18. Sun Y., Song Z., Li F. (2022), Theoretical and experimental studies of an effective active vibration control method based on the deflection shape theory and optimal algorithm, Mechanical Systems and Signal Processing, 170: 108650, doi: 10.1016/j.ymssp.2021.108650.
  • 19. Trojanowski R., Wiciak J. (2020), Impact of the size of the sensor part on sensor-actuator efficiency, Journal of Theoretical and Applied Mechanics, 58(2): 391-401, doi: 10.15632/jtam-pl/118948.
  • 20. Wang W. (2003), Electrode shape optimization of piezoelectric transducers, Ph.D. Thesis, University of Florida.
  • 21. Zhang X., Takezawa A., Kang Z. (2018), Topology optimization of piezoelectric smart structures for minimum energy consumption under active control, Structural and Multidisciplinary Optimization, 58: 185-199, doi: 10.1007/s00158-017-1886-y.
  • 22. Zoric N.D., Tomovic A.M., Obradovic A.M., Radulovic R.D., Petrovic G.R. (2019), Active vibration control of smart composite plates using optimized self-tuning fuzzy logic controller with optimization of placement, sizing and orientation of PFRC actuators, Journal of Sound and Vibration, 456: 173-198, doi: 10.1016/j.jsv.2019.05.035.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57bbba34-2d95-47ba-98de-266fc3ed8079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.