PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustical Boundary Elements : Theory and Virtual Experiments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an overview of basic concepts, features and difficulties of the boundary element method (BEM) and examples of its application to exterior and interior problems. The basic concepts of the BEM are explained firstly, and different methods for treating the non-uniqueness problem are described. The application of the BEM to half-space problems is feasible by considering a Green’s Function that satisfies the boundary condition on the infinite plane. As a special interior problem, the sound field in an ultrasonic homogenizer is computed. A combination of the BEM and the finite element method (FEM) for treating the problem of acoustic-structure interaction is also described. Finally, variants of the BEM are presented, which can be applied to problems arising in flow acoustics.
Słowa kluczowe
Rocznik
Strony
453--465
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • University of Applied Sciences 13353 Berlin, Germany
autor
  • University of Applied Sciences 13353 Berlin, Germany
Bibliografia
  • 1. AMINI S., HARRIS P., WILTON D. (1992), Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem Springer-Verlag, 40-56.
  • 2. BAULAC M., DEFRANCE J., JEAN P., MINARD F. (2006), Efficiency of Noise Protections in Urban Areas: Predictions and Scale Model Measurements, Acta Acustica United with Acustica 92, 530-539.
  • 3. BOLEJKO R., DOBRUCKI A. (2006), FEM and BEM computing costs for acoustical problems, Archives of Acoustics, 31, 2, 193-212.
  • 4. BRICK H. (2009), Application of the Boundary Element Method to combustion noise and, half-space problems, Ph.D Thesis, Chalmers University of Technology, Göteborg, Sweden.
  • 5. BURTON A.J., MILLER G.F. (1971), The application of integral equation methods to numerical solution of some exterior boundary-value problems, Proc. R. Soc. Lond. A, 323, 201-210.
  • 6. DOBRUCKI A.B., PLASKOTA P. (2007), Computational modelling of head-related transfer function, Archive of Acoustics, 32, 659-682.
  • 7. KLIMA J., FRIAS-FERRER A., GONZALEZ-GARCIA J., LUDVIK J., SAEZ V., INIESTA J. (2007), Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and, qualitative comparison with experimental results, Ultrason. Sonochem., 14, 19-28.
  • 8. LEE L., WU T.W., ZHANG P. (1994), A dualreciprocity method for acoustic radiation in a subsonic non-uniform flow, Engineering Analysis with Boundary Elements, 13, 365-370.
  • 9. LIU Y. (2009), Fast Multipole Boundary Element Method,: Theory and Applications in Engineering, Cambridge University Press.
  • 10. MOHSEN A., PISCOYA R., OCHMANN M. (2011), The application of the dual surface method to treat the nonuniqueness in solving acoustic exterior problems, Acta Acustica United with Acustica, 97, 4, 699-707.
  • 11. MONAZZAM M.R., NADERZADEH M., NASSIRI P., FARD S.M.B. (2010), Performance of Environmental T-shape Noise Barriers Covered with Primitive Root Diffusers, Archives of Acoustics, 35, 4, 565-578.
  • 12. OCHMANN M. (2004), The complex equivalent source method for sound propagation over an impedance plane, J. Acoust. Soc. Am., 116, 6, 3304-3311.
  • 13. OCHMANN M. (2011a), Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane, J. Acoust. Soc. Am., 129, 6, 3502-3512.
  • 14. OCHMANN M. (2011b), Transient Green’s functions above infinite impedance planes, Proceedings Forum Acusticum 2011, Aalborg, Denmark, 241-246.
  • 15. OCHMANN M. (2013a), Exact solutions for sound radiation from a moving monopole above an impedance plane, J. Acoust. Soc. Am., 133, 4, 1911-1921.
  • 16. OCHMANN M. (2013b), Modelling of acoustical Green’s functions above impedance planes by a superposition integral, Proceedings AIA-DAGA 2013, Meran.
  • 17. PISCOYA R., BRICK H., OCHMANN M., KÖLTZSCH P. (2008), Equivalent Source Method and, Boundary Element Method for Calculating Combustion Noise, Acta Acustica United with Acustica, 94, 514-527.
  • 18. PERREY-DEBAIN E., TREVELYAN J., BETTES P. (2003), Plane wave interpolation in direct collocation boundary element method for radiation and, wave scattering: numerical aspects and, applications, Journal of Sound and Vibration, 261, 839-858.
  • 19. PISCOYA R., OCHMANN M. (2009), Separation of acoustic and, hydrodynamic components of the velocity for a CFD-BEM hybrid method, Proceedings of the NAG/DAGA 2009, Rotterdam, Netherlands.
  • 20. RAUSCH M., KALTENBACHER M., LANDES H., LERCH R. (2002), Combination of finite and, boundary element methods in investigation and, prediction of load-controlled noise of power transformers, Journal of Sound and Vibration, 250, 323-338.
  • 21. SCHENK H.A. (1968), Improved integral equation formulation for acoustic radiation problems, J. Acoust. Soc. Am., 44, 41-58.
  • 22. SCHRAMM C. (2009), A boundary element extension of Curie’s analogy for non-compact geometries at low- Mach numbers, Journal of Sound and Vibration, 322, 264-281.
  • 23. SEYBERT A.F., WU T.W. (1989), Modified, Helmholtz integral equation for bodies sitting on an infinite plane, J. Acoust. Soc. Am., 85, 1, 19-23.
  • 24. SEYBERT A.F., WU T.W., LI W.L. (1990), Structural Acoustics Applications of the BEM and, the FEM, Boundary Element Methods in Engineering, Springer- Verlag, 536-542.
  • 25. SUZUKI S., MARUYAMA S., IDO H. (1989), Boundary element analysis of cavity noise problems with complicated boundary conditions, Journal of Sound and Vibration, 130, 79-96.
  • 26. TADEU A., SIMOES I., ANTONIO J., SOUSA L. (2012), Simulation of the 3D Sound Pressure Level Inside Closed, Absorbing Acoustic Rooms Bounded by Non- Parallel Floor and, Ceiling Surfaces, and, Parallel Side walls, Acta Acustica United with Acustica, 98, 894- 906.
  • 27. TINNSTEN M., JONSSON M., JOHANSSON O. (2001), Prediction and, Verification of Acoustic Radiation, Acta Acustica United with Acustica, 87, 117-127.
  • 28. TOSH A., LIEVER P., OWENS F, LIU Y. (2012), A High-Fidelity CFD/BEM Methodology for Launch Pad Acoustic Environment Prediction, AIAA Paper, 2012-2107.
  • 29. UTSUNO H., WU T.W., SEYBERT A.F., TANAKA T. (1990), Prediction of sound fields in cavities with sound absorbing materials, AIAA Journal, 28, 1870-1876.
  • 30. WANG A., VLAHOPOULOS N., WU K. (2004), Development of an energy boundary element formulation for computing high-frequency sound radiation from incoherent intensity boundary conditions, Journal of Sound and Vibration, 278, 413-436.
  • 31. WU T.W. (2000), Boundary Element Acoustics: Fundamentals and, Computer Codes, WIT Press, Chapter 6.
  • 32. YASUI K., KOZUKA T., TUZIUTI T., TOWATA A., ILDA Y. (2007), FEM calculation of an acoustic field in a sonochemical reactor, Ultrason. Sonochem., 14, 605-614.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57ba6368-c76c-4fc8-bd09-46a804ce12fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.