Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The GNSS positioning performance is commonly defined and described in terms unspecified to particular GNSS-based application. The approach causes difficulties to GNSS application developers, operators, and users, rendering the impact assessment of GNSS performance on the GNSS application Quality of Service (QoS) particularly difficult. Here the Probability of Occurrence (PoO) Model is introduced, which allows for a risk assessment of the probability for the GNSS positioning accuracy failure to meet the requirements of the particular GNSS-based application. The proposed PoO Model development procedure requires a large set of position estimation errors observations, which shall cover a range of classes of positioning environment (space weather, troposphere, multi-path etc.) disturbances affecting GNSS positioning accuracy. As result, the PoO Model becomes a tool that returns the probability of failure in meeting the positioning accuracy requirements of the GNSS applications considered, thus providing the input for a GNSS deployment risk assessment. The proposed PoO Model and its development procedure are demonstrated in the case of polar region positioning environment, with raw GNSS pseudorange observations taken at the International GNSS Service (IGS) Network reference station Iqualuit, Canada are used for the PoO Model development. The PoO Model proof-of-principle is then used to estimate the probability of the unmet required positioning accuracy for a number of polar maritime navigation applications. Manuscript concludes with a discussion of the PoO Model benefits and shortcomings, a summary of contribution, and intentions for the future research.
Rocznik
Tom
Strony
43--50
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Split, Croatia
autor
- University of Applied Sciences „Hrvatsko Zagorje Krapina“, Krapina, Croatia
autor
- University of Rijeka, Rijeka, Croatia
autor
- University of Rijeka, Rijeka, Croatia
- University of Applied Sciences „Hrvatsko Zagorje Krapina“, Krapina, Croatia
Bibliografia
- [1] HM Government Office for Science. (2018). Satellite-derived Time and Position: A Study of Critical Dependencies. HM Government. London, UK. Available at: https://bit.ly/2MEeBy6 (open access).
- [2] Filjar, R, Damas, M C, Iliev, T B. (2020). Resilient Satellite Navigation Empowers Modern Science, Economy, and Society. CIEES 2020. IOP Conf. Ser: Mater Sci Eng 1032, 012001 (10 pages). Borovets, Bulgaria. doi:10.1088/1757-899X/1032/1/012001 (open access).
- [3] Filić, M, Filjar, R. (2018). Modelling the Relation between GNSS Positioning Performance Degradation, and Space Weather and Ionospheric Conditions using RReliefF Features Selection. Proc of 31st International Technical Meeting ION GNSS+ 2018, 1999-2006. Miami, FL. doi: 10.33012/2018.16016.
- [4] Sanz Subirana, J. et al. (2013). GNSS Data Processing – Vol. I: Fundamentals and Algorithms. European Space Agency (ESA). Nordwijk, The Netherlands. ISBN978-92-9221-886-7. Available at: https://tinyurl.com/wbhu57us (open access).
- [5] Teunissen, P J G, Montenbruck, O. (eds). (2017). Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing AG. Cham, Switzerland. ISBN: 978-3-319-42928-1.
- [6] Filjar, R. (2022). An application-centred resilient GNSS position estimation algorithm based on positioning environment conditions awareness. Proc ION ITM 2022, 1123 - 1136. Long Beach, CA. doi: 10.33012/2022.18247.
- [7] Renfro, B A, Stein, M, Reed, E B, Villalba, E J. (2021). An Analysis of Global Positioning System Standard Positioning Service Performance for 2020. Space and Geophysics Laboratory, Applied Research Laboratories, The University of Texas at Austin. Austin, TX. Available at: https://www.gps.gov/systems/gps/performance/2020-GPS-SPS-performance-analysis.pdf.
- [8] EUSPA. (2021). Report on Maritime and Inland Waterways User Needs and Requirements: Outcome of the EUSPA Consultation Platform. European Agency for Space Programme (EUSPA). Prag, Czechia. Available at: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Report_on_User_Needs_and_Requirements_Maritime.pdf.
- [9] Sikirica, N, Dimc, F, Jukić, O, Iliev, T B, Špoljar, D, Filjar, R. (2021). A Risk Assessment of Geomagnetic Conditions Impact on GPS Positioning Accuracy Degradation in Tropical Regions Using Dst Index. Proc ION ITM 2021, 606-615. San Diego, CA. doi: 10.33012/2021.17852.
- [10] Špoljar, D, Jukić, O, Sikirica, N, Lenac, K, Filjar, R. (2021). Modelling GPS Positioning Performance in Northwest Passage during Extreme Space Weather Conditions. TransNav, 15(1), 165-169. doi:10.12716/1001.15.01.16 (open access).
- [11] Thomas, M et al. (2011). Global Navigation Space Systems: reliance and vulnerabilities. The Royal Academy of Engineering. London, UK. Available at: https://tinyurl.com/55vnk8tn.
- [12] Filjar, R, Sikirica, N, Iliev, T B, Jukić, O. (2022). A Risk Assessment of Space Weather-caused GPS Positioning Accuracy Degradation for GPS Applications in Polar Regions. Presentation at 21st International Beacon Satellite Symposium. Boston College, Chestnut Hill, MA.
- [13] Jukić, O, Iliev, T B, Sikirica, N, Lenac, K, Špoljar, D, Filjar, R. (2020). A method for GNSS positioning performance assessment for location- based services. Proc of 28th Telecommunications Forum TELFOR 2020 (4 pages). Belgrade, Serbia. doi: 10.1109/TELFOR51502.2020.9306548.
- [14] Volpe. (2001). Vulnerability Assessment of the Transportation Infrastructure Relying on the Global Positioning System. John A. Volpe National Transportation Systems Center. Cambridge, MA. Avalaible at: https://rosap.ntl.bts.gov/view/dot/8435.
- [15] Filić, M, Filjar, R. (2018). A South Pacific Cyclone-Caused GPS Positioning Error and Its Effects on Remote Island Communities. TransNav, 12(4), 663-670. doi: 10.12716/1001.12.04.03 (open access).
- [16] Heđi, I, Malić, E, Sikirica, N, Musulin, M, Šimag, D, Filjar, R. (2022). An analysis of GNSS TEC predictability during a rapidly developing short-term geomagnetic storm using Shannon entropy. Proc of 30th TELFOR, 31 - 35. Belgrade, Serbia. doi: 10.1109/TELFOR56187.2022.9983679.
- [17] Špoljar, D, Štajduhar, I, Lenac, K, Filjar, R. (2021). A Predictive Model of Multipath Effect Contribution to GNSS Positioning Error for GNSS-based Applications in Transport and Telecommunications. The Journal of CIEES, 1(2), 7–13. doi: 10.48149/jciees.2021.1.2.1 (open access).
- [18] Rumora, I, Sikirica, N, Filjar, R. (2018). An Experimental Identification of Multipath Effect in GPS Positioning Error. TransNav, 12(1), 29-32. doi: 10.12716/1001.12.01.02 (open access).
- [19] Maindonald, J., Brown, W. J. (2010). Data Analyisis and Graphics Using R: An Example-Based Approach (3rd ed). Cambridge University Press. Cambridge, UK. ISBN 978-0521762939.
- [20] Forsyth, D. (2018). Probability and Statistics for Computer Science. Springer International Publishing AG. Cham, Switzerland. ISBN 978-3-319-64409-7.
- [21] Institute for Land Reclamation and Improvement (ILRI). (2022). CumFreq, a tool for cumulative frequency analysis of a single variable and for probability distribution fitting (freeware). Executables and documentation avaiable at: https://www.waterlog.info/cumfreq.htm (open access).
- [22] R-project. (2023). The R environment for statistical computing, ver. 4.2.2. R-project. Vienna. Austria. Available at: https://www.r-project.org.
- [23] Delignette-Muller, M L, & Dutang, C. (2015). fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software, 64(4), 1–34. doi: 10.18637/jss.v064.i04 (open access).
- [24] Parkinson, B W, Spilker Jr, J J. (1996). Global Positioning System: Theory and Applications (Vol. I.). AIAA, Washington, DC. ISBN 978-1-56347-106-3.
- [25] Filić, M, Grubišić, L, Filjar, R. (2018). Improvement of standard GPS position estimation algorithm through utilization of Weighted Least-Square approach. Proc of 11th Annual Baška GNSS Conference, 7-19. Baška, Krk Island, Croatia. Available: at: https://www.pfri.uniri.hr/web/hr/dokumenti/zbornici-gnss/2018-GNSS-11.pdf (open access).
- [26] IGS. (2023). International GNSS Service database. Maintained by NASA. Available at (free registration required): https://cddis.nasa.gov/archive/gnss/data/daily/.
- [27] Filic, M, Filjar, R, Ruotsalainen, L. (2016). An SDR-Based Study of Multi-GNSS Positioning Performance During Fast-Developing Space Weather Storm. TRANSNAV, 10(3), 395-400. doi: 10.12716/1001.10.03.03 (open access).
- [28] Sonel. (2023). Sonel database of GNSS pseudorange observations. Available at: https://www.sonel.org/-GPS-.html (open access).
- [29] EUREF. (2023). EUREF Permanent GNSS Network database. Available at: https://www.epncb.oma.be/_networkdata/datacalendar.php?station=BORR00ESP&year=2020&month=3&rv=2&c=epn (open access).
- [30] Sikirica, N, Zhen, W, Filjar, R. (2022). Statistical properties of mid-latitude TEC time series observed during rapidly developing short-term geomagnetic storms: A contribution to GNSS-related TEC predictive model development. Proc 3rd URSI AT-AP-RASC. Gran Canaria, Spain. doi: 10.23919/AT-AP-RASC54737.2022.9814229.
- [31] NASA. (2023). OMNIWeb database of space weather observations. Space Physics Data Facility. NASA Goddard Space Center. Available at: https://omniweb.gsfc.nasa.gov/ow.html (open access).
- [32] NASA. (2023). OMNIWeb Data Explorer. NASA Goddard Space Center. Available at: https://omniweb.gsfc.nasa.gov/form/dx1.html (open access).
- [33] SIIG-ISGI. (2023). International Service of Geomagnetic Indices database. Available at: https://isgi.unistra.fr/data_download.php (open access).
- [34] Intermagnet. (2023). Intermagnet network database of geomagnetic field observations. Available at: https://www.intermagnet.org/data-donnee/download-eng.php (open access).
- [35] Takasu, T. (2023). RTKLIB: A Software-Defined GNSS Receiver. Available at: https://github.com/tomojitakasu/RTKLIB (open source).
- [36] Filjar, R, Kos, S, Krajnovic, S. (2013). Dst index as a potential indicator of approaching GNSS performance deterioration. Journal of Navigation, 66(1), 149-160. doi:10.1017/S037346331200029X.
- [37] Filjar, R. (2022). A contribution to short-term rapidly developing geomagnetic storm classification for GNSS ionospheric effects mitigation model development. Proc ICEASE 2021 Conference. Islamabad, Pakistan. doi: 10.1109/ICASE54940.2021.9904168.
- [38] IMO. (2001). Resolution A 22/Res.915, adopted on 29 November 2001 (Agenda item 9). International Maritime Organisation (IMO). London, UK.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57b82d67-2a50-4823-a301-e8a9d61cac8d